
Received 24 July 2019 Revised 22 June 2020 Accepted 30 June 2020
DOI: 10.1002/spe.2881

RESEARCH ARTICLE

Efficient POSIX Submatch Extraction on NFA

Angelo Borsotti1 | Ulya Trofimovich2

1Department of Electronics, Information,
and Bioengineering, Polytechnic University
of Milan, Milan, Italy.

2Department of Discrete Mathematics and
Algorithmics, Belarusian State University,
Minsk, Belarus.

Correspondence
Angelo Borsotti
Email: angelo.borsotti@mail.polimi.it

Ulya Trofimovich
Email: skvadrik@gmail.com

Summary

In this paper we study the performance of NFA-based POSIX submatch extrac-
tion algorithms. We propose an algorithm that combines Laurikari tagged NFA and
extended Okui-Suzuki disambiguation. The algorithm works in worst-caseO(nm2 t)
time and O(m2) space (including preprocessing), where n is the length of input, m
is the size of the regular expression with bounded repetition expanded and t is the
number of capturing groups and subexpressions that contain them. On real-world
benchmarks our algorithm performs close to the O(nm t) complexity of leftmost-
greedymatching, although on artificial benchmarks it can be significantly slower.We
propose a lazy version of the algorithm that runs much faster, but requires O(nm2)
space. We show that the Kuklewicz algorithm is slower in practice, and the backward
matching algorithm proposed by Cox is incorrect.
KEYWORDS:
Regular Expressions, Parsing, Submatch Extraction, Finite-State Automata, POSIX

1 INTRODUCTION

Regular expressions (RE) are a convenient notation for describing regular languages. RE syntax varies among different speci-
fications and standards. Most of the variations allow a more succinct representation, but do not increase the expressive power
of RE. In this paper we do not consider such trivial extensions, with the exception of bounded repetition, which requires
non-trivial changes in the algorithms and proofs. We also do not consider extensions that bring RE beyond regular languages,
such as backreferences. The recognition problem for RE can be solved in O(nm) time and O(m) space, where n is the size of
input and m is the size of RE (e.g. by simulation of a Thompson’s NFA1 2). The parsing problem is more difficult because it has
to deal with ambiguity. Ambiguity means that there are multiple ways to parse the input. The preferred way is usually defined
by a disambiguation policy. There are two widely used policies: the Perl leftmost-greedy policy and the POSIX longest-match
policy. The Perl policy is defined in terms of RE structure; it admits a simple and efficient implementation. The POSIX policy,
on the other hand, is defined in terms of the structure of parse results; it is difficult to implement compared to the Perl policy. In
this paper we focus on the POSIX policy. The problem of submatch extraction is a special case of parsing: it has the same worst-
case complexity, but in practice specialized submatch extraction algorithms are faster than generic full parsing algorithms.

We study NFA-based approaches to the problem. Namely, we consider the algorithms proposed by Okui and Suzuki3, Kuk-
lewicz5 and Cox6. Our experiments show that in general Okui-Suzuki approach is the most efficient one. We combine it with
the insights and useful techniques from other approaches and suggest a few algorithmic and practical improvements of our own.
The proposed algorithm is thoroughly formalized. We are aware of an alternative approach based on Brzozowski derivatives
proposed by Sulzmann and Lu7, but in our experience this approach is slower in practice and has worse algorithmic complexity

0Preprint, the original is Softw Pract Exper. 2020;1-36. https://doi.org/10.1002/spe.2881

2

(discussed in more detail below). Both NFA-based and derivative-based approach can be used to construct DFA with POSIX
semantics8 9 11. The resulting DFA are very fast, because the disambiguation is done at determinization time and there is no
run-time overhead. However, determinization is not always viable due to its exponential worst-case complexity. The algorithm
we propose in this paper is based on NFA, but it can also be used as a basis for DFA construction.

We give an overview of existing algorithms, including some that are incorrect, but interesting from historical perspective. The
list is by no means exhaustive, but in our experience other approaches produce incorrect results or require memory proportional
to the length of input (e.g. the Glibc implementation21).
Laurikari, 2001 (incorrect). Laurikari described an algorithm based on TNFA — �-NFA with tagged transitions4. He
represented each submatch group with a pair of tags (opening and closing). Disambiguation is based on minimizing the value of
opening tags and maximizing the value of closing tags, where different tags have priority according to the POSIX subexpression
hierarchy. The algorithm gives incorrect results for REs with iteration subexpressions, such as (a|aa)* on a string aa (it
minimizes the value of the opening tag on the last iteration, and fails to take into account the preceding iterations). The reported
time complexity is O(nm c t log(t)), where n is the length of input, m is TNFA size, c is the time for comparing tag values and
t is the number of tags. Space complexity is O(m t). Notably, Laurikari used the idea of topological order to avoid worst-case
exponential time of �-closure construction, although his closure algorithm is not optimal, as shown in11.
Kuklewicz, 2007. Kuklewicz fixed Laurikari algorithm by introducing orbit tags for iteration subexpressions. He gave only
an informal description5, but the algorithm was later formalized in11. It works in the same way as the Laurikari algorithm,
except that the comparison of orbit tags takes into account the history of all iterations, not just the most recent one. The key
idea that allows the algorithm to execute in bounded memory is to compress orbit tag histories in a matrix of size t × m, where
m is the size of TNFA and t is the number of tags. t-Th row of the matrix represents the ordering of closure states with respect
to t-th tag. The matrix is updated at each step using the continuations of tag histories. The algorithm requires O(m t) space and
O(nm t (m + t log(m))) time, where n is the length of input (we assume a worst-case optimal O(m2 t) algorithm for �-closure
construction, and an O(m log(m) t2) matrix update, because for t tags m states are sorted with an O(t) comparison function).
Kuklewicz disambiguation is combined with Laurikari determinization in construction of TDFA11.
Cox, 2009 (incorrect). Cox came up with the idea of backward POSIX matching6, which is based on the observation that
reversing the longest-match rule simplifies the handling of iteration subexpressions: instead of maximizing submatch from the
first to the last iteration, one needs to maximize the iterations in reverse order. This means that the disambiguation is always
based on the most recent iteration, removing the need to remember all previous iterations (except for the backwards-first, i.e.
the last one, which contains submatch result). The algorithm tracks two pairs of offsets per each submatch group: the active
pair (used for disambiguation) and the result pair. It gives incorrect results under two conditions: (1) ambiguous matches have
equal offsets on some iteration, and (2) disambiguation happens too late, when the active offsets have already been updated
and the difference between ambiguous matches is erased. We found that such situations may occur for two reasons. First, the
�-closure algorithm may compare ambiguous paths after their join point, when both paths have a common suffix with tagged
transitions. This is the case with the Cox prototype implementation6; for example, it gives incorrect results for (aa|a)* and
string aaaaa. Most of such failures can be repaired by exploring states in topological order, but a topological order does not
exist in the presence of �-loops. The second reason is bounded repetition: ambiguous paths may not have an intermediate join
point at all. For example, in the case of (aaaa|aaa|a){3,4} and string aaaaaaaaaawe have matches (aaaa)(aaaa)(a)(a)
and (aaaa)(aaa)(aaa) with a different number of iterations. Assuming that the bounded repetition is unrolled by chaining
three sub-automata for (aaaa|aaa|a) and an optional fourth one, by the time ambiguous paths meet both have active offsets
(0,4). Despite the flaw, Cox algorithm is interesting: if somehow the delayed comparison problem was fixed, it would work.
The algorithm requires O(m t) memory and O(nm2 t) time (assuming a worst-case optimal closure algorithm), where n is the
length of input, m it the size of RE and t is the number of submatch groups and subexpressions that contain them.
Okui and Suzuki, 2013. Okui and Suzuki view the disambiguation problem from the point of comparison of parse trees3.
Ambiguous trees have the same frontier of leaf symbols, but their branching structure is different. Each subtree corresponds
to a subexpression. The norm of a subtree is the number of alphabet symbols in it (a.k.a. submatch length). The longest match
corresponds to a tree in which the norm of each subtree in leftmost in-order traversal is maximized. The clever idea of Okui
and Suzuki is to relate the norm of subtrees to their height (the distance from the root). Namely, if we walk through the leaves
of two ambiguous trees, tracking the height of each complete subtree, then at some step the heights will diverge: subtree with

3

a smaller norm will already be complete, but the one with a greater norm will not. The height of subtrees is easy to track by
attributing it to parentheses and encoding in the automaton transitions. Okui and Suzuki use PAT — �-free position automaton
with transitions labeled by sequences of parentheses. Disambiguation is based on comparing parentheses along ambiguous PAT
paths. Similar to Kuklewicz, Okui and Suzuki avoid recording full-length paths by pre-comparing them at each step and storing
the comparison results in a pair of matrices indexed by PAT states. The authors report complexity O(n(m2 + c)), where n is
the input length, m is the number of occurrences of the most frequent symbol in RE and c is the number of submatch groups
and repetition operators. Memory requirement is O(m2). However, these estimates leave out precomputation of the precedence
relation and the construction of PAT, which may grow exponential in the size of RE: the transformation from RE to PAT is
ambiguity-preserving, which means that there may be multiple transitions with different labels between a pair of PAT states.
For example, for RE ((a*)|(a*)){k} there are 2k different ways to match the empty string, and consequently 2k transitions
between the initial and the final states of PAT. Although such RE are unlikely in practice, RE engines should be able to handle
them in reasonable time. Okui-Suzuki disambiguation is combined with Berry-Sethi construction in parsing DFA9.
Sulzmann and Lu, 2013. Sulzmann and Lu based their algorithm on Brzozowski derivatives7 (correctness proof is given
by Ausaf, Dyckhoff and Urban10). The algorithm unfolds a RE into a sequence of derivatives and then folds it back into a
parse tree. Each derivative is obtained from the previous one by consuming an input symbol in left-to-right order, and each tree
is built from the next tree by injecting a symbol in reversed right-to-left order. In practice, Sulzmann and Lu fuse backward
and forward passes, which allows to avoid potentially unbounded memory usage on keeping all intermediate derivatives. The
algorithm is elegant in that it does not require explicit disambiguation: by the definition of derivative, parse trees are ordered by
the longest-match criterion. Time and space complexity is not entirely clear. In7 Sulzmann and Lu consider the size of RE as a
constant. In8 they give more precise estimates: O(2m t) space and O(n log(2m) 2m t2) time, where m is the size of RE, n is the
length of input and t the number of submatch groups (the authors do not differentiate between m and t). However, this estimate
assumes worst-case O(2m) derivative size and on-the-fly DFA construction. The authors also mention a better O(m2) theoretical
bound for derivative size. If we adopt this bound and exclude DFA construction, we get O(m2 t) memory requirement and
O(nm2 t2) time, which seems reasonably close to (but worse than) NFA-based approaches.

Our contributions are the following:
• We extend Okui-Suzuki algorithm on partially ordered parse trees, which greatly reduces the disambiguation overhead.
• We extend Okui-Suzuki algorithm on the case of bounded repetition.
• We use Laurikari TNFA instead of Okui-Suzuki PAT, which avoids the potential blowout of PAT size.
• We introduce negative tags that allow us to handle no-match and match cases uniformly.
• We consider �-closure construction as a shortest-path problem and use the Goldberg-Radzik algorithm.
• We give a fast O(m2) algorithm for updating the precedence matrix (where m is the size of the �-closure).
• We provide a way to output either parse trees or POSIX-style offsets.
• We give a lazy version of the algorithm that is faster, but uses memory proportional to the size of input.
• We provide a C++ implementation of the described algorithms.

The rest of this paper is arranged as follows. In section 2 we present the main idea and the skeleton of our algorithm. In section
3 we provide theoretical foundations for the rest of the paper. After that, we go into specific details: section 4 is concerned with
�-closure construction, section 5 discusses data structures used to represent TNFA paths, section 6 discusses possible output
formats (parse trees or POSIX-style offsets), section 7 gives the core disambiguation algorithms, section 8 presents a lazy version
of the algorithm, and section 9 gives specific TNFA construction. The remaining sections 10, 11 and 12 contain complexity
analysis, benchmarks, conclusions and directions for future work.

2 SKELETON OF THE ALGORITHM

Our algorithm is based on four cornerstone concepts: regular expressions, parse trees, parenthesized expressions and tagged
NFA. Following Okui and Suzuki3, we give the interpretation of regular expressions as sets of parse trees and define POSIX
disambiguation semantics in terms of order on parse trees. This definition reflects the POSIX standard, but it is too high-level

4

to be used in practice. From parse trees we go to their linearized representation — parenthesized expressions. We define an
order on parenthesized expressions and show its equivalence to the order on parse trees. The latter definition of order is more
low-level and can be converted to an efficient disambiguation algorithm. Finally, we construct TNFA and map parenthesized
expressions to its paths, which allows us to compare ambiguous paths using the algorithm for parenthesized expressions. In this
section we give the four basic definitions and the skeleton of the algorithm. In the following sections we formalize the relation
between different representations and fill in all the details.
Definition 1. Regular expressions (RE) over finite alphabet Σ, denotedΣ:

1. Empty RE � and unit RE a (where a ∈ Σ) are inΣ.
2. If e1, e2 ∈ Σ, then alternative e1|e2, concatenation e1 ⋅ e2, repetition en,m1 (where 0 ≤ n ≤ m ≤ ∞), and submatch group
(e1) are inΣ. (Convention: e1 ⋅ e2 may be shortened as e1e2, and en,n may be shortened as en.)

Definition 2. Parse trees (PT) over finite alphabet Σ, denoted Σ:
1. Nil tree ⊥i, empty tree �i and unit tree ai are in Σ, where a ∈ Σ and i ∈ ℤ.
2. If t1,… , tn ∈ Σ (where n ≥ 1) and i ∈ ℤ, then T i(t1,… , tn) is in Σ.

Definition 3. Parenthesized expressions (PE) over finite alphabet Σ, denoted Σ:
1. Nil expression ⟨⟩, empty expression � and unit expression a (where a ∈ Σ) are in Σ.
2. If �, � ∈ Σ, then �� and ⟨�⟩ are in Σ.

Definition 4. Tagged Nondeterministic Finite Automaton (TNFA) is a structure (Σ, Q,M,Δ, q0, qf), where:
Σ is a finite set of symbols (alphabet)
Q is a finite set of states
M is a function that maps tags m ∈ ℤ to tuples (S,N),

where S ⊂ ℤ is a set of submatch groups, andN ⊂ ℤ is a set of nested tags
Δ = ΔΣ ⊔ Δ� is the transition relation, consisting of two parts:

ΔΣ contains untagged transitions on symbols of the form (q1, a, �, q2)
Δ� contains optionally tagged �-transitions with priority of the form (q1, n, m, q2)

where q1, q2 ∈ Q, a ∈ Σ, n ∈ ℤ is priority, m ∈ ℤ ∪ {�} is an optional tag
q0 ∈ Q is the initial state
qf ∈ Q is the final state

Our definition of RE is extended with submatch operator and generalized repetition. This is not just syntactic sugar: in POSIX
(a)(a) is semantically different from (a){2}, and (a) in not the same as a. Parse trees have a special nil-tree constructor and
an upper index, which allows us to distinguish between submatch and non-submatch subtrees. Mirroring parse trees, parenthe-
sized expressions have a nil-parenthesis. TNFA is in essence a nondeterministic finite-state transducer which reads symbolic
strings and transduces them to sequences of tags — integer numbers that denote opening and closing parentheses of submatch
groups. Tags on transitions can be negative, which represents the absence of match and corresponds to the nil-parenthesis ⟨⟩
and the nil-tree ⊥. Transition priorities are used to impose specific order of TNFA traversal.

We use the following notation in the algorithms throughout the paper (with possible subscripts and diacritics):
• Integer numbers, indexes and tags are denoted with i, j, k, l, m, n.
• Strings over Σ are denoted with w and a1… an.
• REs and their variations are denoted with e.
• PTs are denoted with t, s and r.
• PEs and PE fragments are denoted with �, �,
 , �.
• TNFA is denoted with F , and its states are denoted with q.
• U is the tag path tree — a data structure that stores tag sequences along TNFA paths. Individual paths are represented
with tree indices— integer numbers, denoted with u. Index zero is the empty path.

• P is the precedence matrix— a square matrix indexed by TNFA states, with elements in the {−1, 0, 1} set, denoted with
p. It is used for disambiguation and corresponds to the Okui-SuzukiD-matrix. The value of a matrix cell P [q1][q2] equals
−1 if the path to q1 precedes the path to q2, 0 if they are equal, or 1 otherwise.

5

• H is the height matrix — a square integer matrix indexed by TNFA states, with elements denoted with ℎ. It contains
auxiliary data used in the computation of P -matrix, and corresponds to the Okui-Suzuki B-matrix.

• Partial match results (parse trees or POSIX-style offsets) are denoted with d.
• C is a set of configurations (q2, q1, u, d), where q2 is a unique target state, q1 is the origin state (an index in theH and P
matrices), u is the tagged path from q1 to q2 (an index in the U -tree), and d is the partial match result.

• We use either subscript (as in ai) or square brackets (as in P [q1][q2]) to denote the elements of sequences or matrices.
• We use the dot notation (as in U [n].pred) to access the elements of tuples and structures.
• We avoid global state and explicitly pass parameters to functions.

Below is the skeleton of the matching algorithm:
1 matcℎ

(
F = (Σ, Q,M,Δ, q0, qf), a1… an

)

2 H,P ∶ square integer matrices of size |Q|
3 U = empty patℎ tree()
4 C =

{
(q0, ⊥, 0, initial result(M))

}

5 for i = 1, n do
6 C = closure(F , C, U,H, P)
7 C = update result(T , C, U, i, ai)
8 (H,P) = update precedence(F , C, U,H, P)
9 C =

{
(q2, q1, 0, d) ∣ (q1, , , d) ∈ C ∧ (q1, ai, �, q2) ∈ Δ

}
10 if C = ∅ then
11 return ⊥
12 C = closure(F , C, U,H, P)
13 if ∃(q, , u, d) ∈ C ∣ q = qf then
14 return final result(M,U, u, d, n)
15 return ⊥

ALGORITHM 1: TNFA simulation on a string.
The matcℎ algorithm takes a TNFA F and a string a1… an as input. During the initialization step it creates an empty U -tree
and allocates H and P matrices (initialization of their elements is not needed, as the initial values are not used). The initial
configuration set C contains a single configuration that consists of the initial TNFA state q0, undefined origin state ⊥, empty
tagged path and initial match result. The algorithm loops over the input characters ai until either all characters are matched,
or the configuration set C becomes empty, indicating a match failure. At each step the algorithm constructs �-closure of the
current configuration set, extending the tagged paths in the U -tree, updates the partial match result, re-computes the precedence
information in the H and P matrices, and steps on TNFA transitions labeled with the current input symbol. Finally, if all
input symbols have been matched and the final configuration set contains a configuration with the final state qf , the algorithm
terminates successfully and returns the final match result. Otherwise it returns a failure.

We intentionally leave some parts of the algorithm undefined in this section. They will be addressed in detail in subsequent
sections, after we present the formal foundations of our algorithm in section 3:

• Function closure constructs �-closure of a configuration set C (section 4). Essentially, it builds shortest paths from the
states in the current set, following �-transitions in TNFA and comparing paths by the POSIX criterion.

• Functions empty patℎ tree, extend patℎ and unroll patℎ are used with the U -tree (section 5).
• Functions initial result, update result and final result update match results (section 6).
• Function update precedence computes theH and P matrices by performing a pairwise comparison of all configurations
in C (section 7). It is the key part of the algorithm that allows to compress precedence information about arbitrary long
tagged paths in constant space. If the paths originating from the current configurations join at some future step, the
closure function will compare them using the information in H and P . If, on the other hand, the paths do not join, then
the comparison performed by update precedence is redundant. Unfortunately, we cannot avoid such redundant compar-
isons, as we do not know in advance which configurations will spawn ambiguous paths. It is possible to use on-demand
comparison instead of update precedence (section 8), but that requires keeping arbitrary long tagged paths in memory.

6

3 FORMALIZATION

In this section we establish the relation between all intermediate representations. For brevity all proofs have been moved to the
appendix. First of all, we rewrite REs in a form that separates submatch information from the RE structure: instead of using
parentheses to denote submatch groups, it stores submatch information for each subexpression in the form of an implicit submatch
index and a set of explicit submatch indices. Explicit indices enumerate submatch groups in RE: an empty set ∅ means that the
subexpression is not a submatch group, and a set with multiple indices means that the subexpression is enclosed in multiple
submatch groups, as in ((e)). Implicit indices enumerate all subexpressions that affect disambiguation, in top-down and left-
to-right order (this includes submatch groups and subexpressions that contain nested or sibling submatch groups). The above
representation reflects the POSIX standard, which states that submatch extraction applies only to parenthesized subexpressions,
but the disambiguation rules apply to all subexpressions regardless of parentheses.
Definition 5. Indexed regular expressions (IRE) over finite alphabet Σ, denoted Σ:

1. Eps(i, J) and Sym(i, J , �) are in Σ, where � ∈ Σ, i ∈ ℤ and J ⊆ ℤ.
2. If e1, e2 ∈ Σ then alternativeAlt(i, J , e1, e2), concatenationCat(i, J , e1, e2) and repetitionRep(i, J , e1, n, m) are in Σ,

where i ∈ ℤ, J ⊆ ℤ and n, m ∈ ℤ ∶ 0 ≤ n ≤ m ≤∞.
Here i is the implicit submatch index and J is the set of explicit submatch indices, denoted isub(e) and esub(e) respectively.
Function IRE ∶ Σ → Σ transforms RE into IRE. It is defined via a composition of two functions. Function mark ∶ ℤ ×Σ ←→ ℤ×Σ transforms RE into IRE with implicit indices in the boolean range (1 if a subexpression affects disambiguation,
otherwise 0) and computes explicit index sets. It tracks themaximal used value of the explicit index. Function enum ∶ ℤ×Σ ←→
ℤ × Σ substitutes boolean implicit indices with consecutive numbers. It tracks the maximal used value of the implicit index.
Auxiliary function fix ∶ ℤ × 2ℤ × Σ ←→ Σ applies its input submatch indices to the top-level indices of IRE.

mark(j, �) = (j, Eps(0, ∅))
mark(j, �) = (j, Sym(0, ∅, �))
mark(j, e1 ∣ e2) = (j′′, Alt(i, ∅, fix(i, ∅, e′1), fix(i, ∅, e

′
2)))

where (j′, e′1) = mark(j, e1)
(j′′, e′2) = mark(j

′, e2)
i = isub(e′1) ∨ isub(e

′
2)

mark(j, e1 ⋅ e2) = (j′′, Cat(i, ∅, fix(i, ∅, e′1), fix(i, ∅, e
′
2)))

where (j′, e′1) = mark(j, e1)
(j′′, e′2) = mark(j

′, e2)
i = isub(e′1) ∨ isub(e

′
2)

mark(j, en,m) = (j′, Rep(isub(e′), ∅, e′, n, m))
where (j′, e′) = mark(j, e)

mark(j, (e)) = (j′, fix(1, {j}, e′))
where (j′, e′) = mark(j + 1, e)

enum(k, Eps(i, J)) = (k + i, Eps(k ⋅ i, J))
enum(k, Sym(i, J , �)) = (k + i, Sym(k ⋅ i, J , �))
enum(k,Xop(i, J , e1, e2)) ∣Xop∈{Alt,Cat}= (k′′, Xop(k ⋅ i, J , e′1, e

′
2))

where (k′, e′1) = enum(k + i, e1)
(k′′, e′2) = enum(k

′, e2)
enum(k,Rep(i, J , e, n, m)) = (k′, Rep(k ⋅ i, J , e′, n, m))

where (k′, e′) = enum(k + i, e)

fix(k,K,Eps(i, J)) = Eps(i∨k, J∪K)
fix(k,K, Sym(i, J , �)) = Sym(i∨k, J∪K, �)
fix(k,K,Xop(i, J , e1, e2)) ∣Xop∈{Alt,Cat}= Xop(i∨k, J∪K, e1, e2)
fix(k,K,Rep(i, J , e, n, m)) = Rep(i∨k, J∪K, e, n, m)

IRE(e) = e′′ where (, e′) = mark(1, e), (, e′′) = enum(1, e′)

A step-by-step example of constructing an IRE from a RE is given on figure 1 .

The relation between REs and PTs is given by the operator PT ∶ Σ → 2Σ . Each IRE denotes a set of PTs. We write str(t)
to denote the string formed by concatenation of all alphabet symbols in the left-to-right traversal of t, and PT (e,w) denotes the
set {t ∈ PT (e) ∣ str(t) = w} of all PTs for IRE e and a string w.

PT (Eps(i,)) = {�i}
PT (Sym(i, , �)) = {�i}

PT (Alt(i, , e1, e2)) = {T i(t, ⊥isub(e2)) ∣ t ∈ PT (e1)} ∪ {T i(⊥isub(e1), t) ∣ t ∈ PT (e2)}
PT (Cat(i, , e1, e2)) = {T i(t1, t2) ∣ t1 ∈ PT (e1), t2 ∈ PT (e2)}

PT (Rep(i, , e, n, m)) ∣n=0 = {T i(t1,… , tm) ∣ tk ∈ PT (e), 1 ≤ k ≤ m} ∪ {T i(⊥isub(e))}
PT (Rep(i, , e, n, m)) ∣n>0 = {T i(tn,… , tm) ∣ tk ∈ PT (e), n ≤ k ≤ m}

7

mark(1, (((�|a0,∞))(a|�)0,3)) = [
mark(2, ((�|a0,∞))(a|�)0,∞) = [
mark(2, ((�|a0,∞))) = [
mark(3, (�|a0,∞)) = [

mark(4, �|a0,∞) = [
mark(4, �) = (4, Eps(0, ∅))
mark(4, a0,∞) = [
mark(4, a) = (4, Sym(0, ∅, a))

] = (4, Rep(0, ∅, Sym(0, ∅, a), 0,∞))
] = (4, Alt(0, ∅, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)))

] = (4, Alt(1, {3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)))
] = (4, Alt(1, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)))
mark(4, (a|�)0,3) = [
mark(4, (a|�)) = [

mark(5, a|�) = [
mark(5, a) = (5, Sym(0, ∅, a))
mark(5, �) = (5, Eps(0, ∅))

] = (5, Alt(0, ∅, Sym(0, ∅, Eps(0, ∅), a)))
] = (5, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)))

] = (5, Rep(1, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3))
] = (5, Cat(1, ∅, Alt(1, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)),

Rep(1, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3)))
] = (5, Cat(1, {1}, Alt(1, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)),

Rep(1, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3)))

enum(1, Cat(1, {1}, Alt(1, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)),
Rep(1, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3))) = [

enum(2, Alt(1, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞))) = [
enum(3, Eps(0, ∅)) = (3, Eps(0, ∅))
enum(3, Rep(0, ∅, Sym(0, ∅, a), 0,∞)) = [

enum(3, Sym(0, ∅, a)) = (3, Sym(0, ∅, a))
] = (3, Rep(0, ∅, Sym(0, ∅, a), 0,∞))

] = (3, Alt(2, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)))
enum(3, Rep(1, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3)) = [
enum(4, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅))) = [

enum(5, Sym(0, ∅, a)) = (5, Sym(0, ∅, a))
enum(5, Eps(0, ∅)) = (5, Eps(0, ∅))

] = (5, Alt(4, {4}, Sym(0, ∅, a), Eps(0, ∅)))
] = (5, Rep(3, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3))

] = (5, Cat(1, {1}, Alt(2, {2, 3}, Eps(0, ∅), Rep(0, ∅, Sym(0, ∅, a), 0,∞)),
Rep(3, ∅, Alt(1, {4}, Sym(0, ∅, a), Eps(0, ∅)), 0, 3)))

Cat(1, {1}, ∗, ∗)Λ

Alt(2, {2, 3}, ∗, ∗)1

Eps(0, ∅)1.1 Rep(0, ∅, ∗, 0,∞)1.2

Sym(0, ∅, a)1.2.1

Rep(3, ∅, ∗, 0, 3)2

Alt(4, {4}, ∗, ∗)2.1

Sym(0, ∅, a)2.1.1 Eps(0, ∅)2.1.2

T 1
Λ

T 2
1

⊥0
1.1 T 0

1.2

a01.2.1

T 3
2

⊥4
2.1

(1)

(1)

(∞) (∞)

(∞)

(0)

(−1)

s = T 1(T 2(⊥0, T 0(a0)), T 3(⊥4))

T 1
Λ

T 2
1

�01.1 ⊥0
1.2

T 3
2

T 4
2.1

a02.1.1 ⊥0
2.1.2

T 4
2.2

⊥0
2.2.1 �02.2.2

(1)

(0)

(∞) (∞)

(1)

(1)

(∞) (∞)

(0)

(∞) (∞)

r = T 1(T 2(�0, ⊥0), T 3(T 4(a0, ⊥0), T 4(⊥0, �0)))

T 1
Λ

T 2
1

⊥0
1.1 T 0

1.2

⊥0
1.2.1

T 3
2

T 4
2.1

a02.1.1 ⊥0
2.1.2

(1)

(0)

(∞) (∞)

(∞)

(1)

(1)

(∞) (∞)

t = T 1(T 2(⊥0, T 0(⊥0)), T 3(T 4(a0, ⊥0)))

FIGURE 1 IRE for RE (((�|a0,∞))(a|�)0,3) and examples of PTs for string a with S-norm in parentheses.
Following Okui and Suzuki, we assign positions to the nodes of IRE and PT. The root position is Λ, and position of the i-th
subtree of a tree with position x is x.i (we shorten ‖t‖Λ as ‖t‖). The length of position x, denoted |x|, is defined as 0 for Λ and
|x|+1 for x.i. The subtree of a tree t at position x is denoted t|x. Position x is a prefix of position y iff y = x.x′ for some x′, and
a proper prefix if additionally x ≠ y. Position x is a sibling of position y iff y = z.i, x = z.j for some z and i, j ∈ ℕ. Positions
are ordered lexicographically. The set of all positions of a tree t is denoted Pos(t). Additionally, we define a set of submatch
positions as Sub(t) = {

x ∈ Pos(t) ∣ ∃i ≠ 0, s ∶ t|x = si}— a subset of Pos(t) that contains positions of subtrees with nonzero
implicit submatch index. Intuitively, this is the set of positions important for disambiguation: in the case of ambiguity we do not
need to consider the full trees, just the relevant parts of them. PTs have two definitions of norm, one for Pos and one for Sub,
which we call p-norm and s-norm respectively.

8

Definition 6. The p-norm and s-norm of a PT t at position x are:

‖t‖posx =
⎧
⎪⎨⎪⎩

−1 if x ∈ Pos(t) and t|x = ⊥i
|str(t|x)| if x ∈ Pos(t) and t|x ≠ ⊥i

∞ if x ∉ Pos(t)
‖t‖subx =

⎧
⎪⎨⎪⎩

−1 if x ∈ Sub(t) and t|x = ⊥i
|str(t|x)| if x ∈ Sub(t) and t|x ≠ ⊥i

∞ if x ∉ Sub(t)
Generally, the norm of a subtree means the number of alphabet symbols in its leaves, with two exceptions. First, for nil subtrees
the norm is −1: intuitively, they have the lowest “ranking” among all possible subtrees. Second, for nonexistent subtrees (those
with positions not in Pos(t)) the norm is infinite. This may seem counter-intuitive at first, but it makes sense in the presence of
REs with empty repetitions. According to POSIX, optional empty repetitions are not allowed, and our definition reflects this: if
a tree s has a subtree s|x corresponding to an empty repetition, and another tree t has no subtree at position x, then the infinite
norm ‖t‖x “outranks” ‖s‖x. We define two orders on PTs:
Definition 7 (P-order on PTs). Given parse trees t, s ∈ PT (e,w) for some IRE e and stringw, we say that t <x s w.r.t. decision
position x iff ‖t‖posx > ‖s‖posx and ‖t‖posy = ‖s‖posy ∀y < x. We say that t < s iff t <x s for some x.
Definition 8 (S-order on PTs). Given parse trees t, s ∈ PT (e,w) for some IRE e and stringw, we say that t ≺x s w.r.t. decision
position x iff ‖t‖subx > ‖s‖subx and ‖t‖suby = ‖s‖suby ∀y < x. We say that t ≺ s iff t ≺x s for some x.
Definition 9. PTs t and s are incomparable, denoted t ∼ s, iff neither t ≺ s, nor s ≺ t.

Theorem 1. P-order < is a strict total order on PT (e,w) for any IRE e and string w.
Theorem 2. S-order ≺ is a strict weak order on PT (e,w) for any IRE e and string w.
The following theorem 3 establishes an important relation between P-order and S-order. P-order is total, and there is a unique <-
minimal tree tmin. S-order is partial, it partitions all trees into equivalence classes and there is a whole class of ≺-minimal trees
Tmin (such trees coincide in submatch positions, but differ in some non-submatch positions). Theorem 3 shows that tmin ∈ Tmin.
This means that P-order and S-order “agree” on the notion of minimal tree: we can continuously narrow down Tmin until we are
left with tmin. Note that this doesn’t mean that P-order is an extension of S-order: the two orders may disagree. For example,
consider trees t and r on figure1 : on one hand t ≺2.2 r, because ‖t‖sub2.2 = ∞ > 0 = ‖r‖sub2.2 and s-norms at all preceding submatch
positions agree; on the other hand r <1.1 t, because ‖t‖pos1.1 = −1 < 0 = ‖r‖pos1.1 and p-norms at all preceding positions agree.
Theorem 3. Let tmin be the <-minimal tree in PT (e,w) for some IRE e and string w, and let Tmin be the class of ≺-minimal
trees in PT (e,w). Then tmin ∈ Tmin.
The following theorem 4 states that submatch refinement is a contiguous process: adding more parentheses in RE does not
cardinally change existing submatch results, it only adds new details.
Theorem 4. Let e, e′ be two REs, such that e′ is constructed from e by adding a pair of parentheses around some subexpression,
and let ē = IRE(e) and ē′ = IRE(e′). If Tmin, T ′min are the classes of ≺-minimal trees in PT (ē, w) and PT (ē′, w) respectively
for some string w, then T ′min ⊆ Tmin.
Following the idea of Okui and Suzuki, we go from comparison of parse trees to comparison of their linearized representation
— parenthesized expressions. Parenthesis ⟨ is opening, and parenthesis ⟩ is closing; the nil-parenthesis ⟨⟩ is both opening and
closing. For convenience we sometimes annotate parentheses with height, which we define as the number of preceding opening
parentheses (including this one) minus the number of preceding closing parentheses (including this one). Explicit height anno-
tations allow us to consider PE fragments in isolation without losing the context of the whole expression. However, height is not
a part of parenthesis itself, and it is not taken into account when comparing the elements of PEs. Function Φ ∶ ℤ × Σ → Σ
transforms PT at the given height into a PE:

Φℎ(ti) =

⎧⎪⎪⎨⎪⎪⎩

str(ti) if i = 0
⟨⟩ℎ if i ≠ 0 ∧ t = ⊥
⟨ℎ+1⟩ℎ if i ≠ 0 ∧ t = �
⟨ℎ+1a⟩ℎ if i ≠ 0 ∧ t = a ∈ Σ
⟨ℎ+1Φℎ+1(t1)…Φℎ+1(tn)⟩ℎ if i ≠ 0 ∧ t = T (t1,… , tn)

9

For a given IRE e and string w the set of all PEs {Φ0(t) ∣ t ∈ PT (e,w)
} is denoted PE(e,w).

Definition 10 (Frame representation of PEs). A given PE � can be represented as �0a1�1… an�n, where �i is the i-th frame—
a possibly empty sequence of parentheses between subsequent alphabet symbols ai and ai+1, or the beginning and end of �.
Definition 11 (Comparable PE fragments). PE fragments � and � are comparable if they are prefixes of strings in PE(e,w) for
some IRE e and string w and have the same number of frames.
Definition 12 (Fork). The fork of comparable PE fragments � and � is the index of the first distinct pair of frames.
We use the following notation. For PE fragments � and �, � ⊓ � denotes their longest common prefix, and �∖� denotes the
suffix of � after removing � ⊓ �. For a PE fragment �, first(�) denotes the first parenthesis in � (or ⊥ if � is empty or begins
with an alphabet symbol), lastℎ(�) denotes the height of the last parenthesis in � (or∞ if � is empty or begins with an alphabet
symbol), and minℎ(�) denotes the minimal height of parenthesis in � (or∞ if � is empty or begins with an alphabet symbol).
Definition 13 (Traces). Let �, � be comparable PE prefixes, such that � = �0a1�1… an�n, � = �0a1�1… an�n and k is the fork.
We define trace(�, �) as the sequence (ℎ0,… , ℎn), where:

ℎi =
⎧
⎪⎨⎪⎩

−1 if i < k
min(lastℎ(�i ⊓ �i), minℎ(�i∖�i)) if i = k
min(ℎi−1, minℎ(�i)) if i > k

We write traces(�, �) to denote (trace(�, �), trace(�, �)).
Definition 14. (Longest precedence.) Let �, � be comparable PE prefixes and traces(�, �) = (

(ℎ0,… , ℎn), (ℎ′0,… , ℎ′n)
). Then

� ⊏ � ⇔ ∃i ≤ n ∶
(
ℎi > ℎ′i

)
∧
(
ℎj = ℎ′j ∀j > i

). If neither � ⊏ �, nor � ⊏ �, then �, � are longest-equivalent: � ∼ � (note that
in this case ℎi = ℎ′i for 1 ≤ i ≤ n).
Definition 15. (Leftmost precedence.) Let �, � be comparable PE prefixes, and let x = first(�∖�), y = first(�∖�). Then
� ⊂ � ⇔ x < y, where the set of possible values of x and y is ordered as follows: ⊥ <⟩ < ⟨< ⟨⟩.
Definition 16. (Longest-leftmost precedence.) Let �, � be comparable PE prefixes, then � < � ⇔

(
� ⊏ �

)
∨
(
� ∼ � ∧ � ⊂ �

).

Theorem 5. If s, t ∈ PT (e,w) for some IRE e and string w, then s ≺ t⇔ Φℎ(s) < Φℎ(t) ∀ℎ.
Examples of PE comparison are shown on figures 2 and 3 .

t1

a a a

t2

a a a

t3

a a a

t4

a a a

t5

a a a

t6

a a a

t7

a a a

t8

a a a

t9

a a a

Φ0(t1) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t2) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t3) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t4) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t5) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t6) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t7) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t8) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t9) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t7 ≺ t6 ≺ t8 ≺ t9

t2 t3 t4 t5 t6 t7 t8 t9
-1 -1 3 0-1 -1 2 0 -1 3 3 0-1 2 2 0 -1 3 3 0-1 2 2 0 -1 -1 3 0-1 -1 1 0 -1 3 3 0-1 1 1 0 -1 3 3 0-1 2 1 0 -1 3 3 0-1 1 1 0 -1 3 3 0-1 1 1 0 t1

-1 3 2 0-1 2 2 0 -1 3 2 0-1 2 2 0 -1 -1 2 0-1 -1 1 0 -1 3 2 0-1 1 1 0 -1 3 2 0-1 2 1 0 -1 3 2 0-1 1 1 0 -1 3 2 0-1 1 1 0 t2
-1 -1 3 0-1 -1 2 0 -1 2 2 0-1 3 1 0 -1 2 2 0-1 1 1 0 -1 -1 3 0-1 -1 1 0 -1 2 2 0-1 1 1 0 -1 2 2 0-1 1 1 0 t3

-1 2 2 0-1 3 1 0 -1 2 2 0-1 1 1 0 -1 -1 2 0-1 -1 1 0 -1 2 2 0-1 1 1 0 -1 2 2 0-1 1 1 0 t4
-1 3 1 0-1 1 1 0 -1 3 1 0-1 2 1 0 -1 3 1 0-1 1 1 0 -1 3 1 0-1 1 1 0 t5

-1 1 1 0-1 2 1 0 -1 -1 3 0-1 -1 2 0 -1 -1 3 0-1 -1 1 0 t6
-1 2 1 0-1 1 1 0 -1 2 1 0-1 1 1 0 t7

-1 -1 2 0-1 -1 1 0 t8

FIGURE 2 Example of pairwise frame-by-frame comparison of all PEs for RE (((a)1,3)1,3)1,3 and string aaa.
Table entry (ti, tj) contains traces(Φ0(ti),Φ0(tj)).

10

s = T 1(T 2(⊥0, T 0(a0, a0)))

T 1

T 2

⊥0 T 0

a0 a0

⟨1 ⟩0

⟨2 ⟩1

t = T 1(T 2(a0, ⊥0), T 2(a0, ⊥0))

T 1

T 2

a0 ⊥0

T 2

a0 ⊥0

⟨1 ⟩0

⟨2 ⟩1 ⟨2 ⟩1

� = Φ0(s) =
⎴⎴
⟨1⟨2 a

⎴⎴
a
⎴⎴
⟩1⟩0

� = Φ0(t) =
⎴⎴
⟨1⟨2 a

⎴⎴
⟩1⟨2 a

⎴⎴
⟩1⟩0

traces(�, �) ∶
⎡
⎢⎢⎢⎢⎣

ℎ0 = ℎ′
0 = −1

ℎ1 = min(lastℎ(⟨1⟨2), minℎ(�)) = min(2,∞) = 2
ℎ′
1 = min(lastℎ(⟨1⟨2), minℎ(⟩1⟨2)) = min(2, 1) = 1

ℎ2 = min(ℎ1, minℎ(⟩1⟩0)) = min(2, 0) = 0
ℎ′
2 = min(ℎ′

1, minℎ(⟩1⟩0)) = min(1, 0) = 0

‖s‖sub1 = 2 > 1 = ‖t‖sub1 ∧ ‖s‖subx = ‖t‖subx ∀x < 1 ⇒ s ≺1 t ℎ1>ℎ′
1 ∧ ℎ2=ℎ′

2 ⇒ �⊏� ⇒ �<�

(a) – Rule 1: longest precedence, RE (a|aa)0,∞ and string aa.

s = T 1(a2, ⊥3)

T 1

a2 ⊥3

⟨1 ⟩0

⟨2 ⟩1 ⟨⟩1
t = T 1(⊥2, a3)

T 1

⊥2 a3

⟨1 ⟩0

⟨⟩1 ⟨2 ⟩1

� = Φ0(s) =
⎴⎴
⟨1⟨2 a

⎴⏞⏞⏞⎴
⟩1⟨⟩1⟩0

� = Φ0(t) =
⎴⏞⏞⏞⎴
⟨1⟨⟩1⟨2 a

⎴⎴
⟩1⟩0

traces(�, �) ∶
⎡
⎢⎢⎢⎣

ℎ0 = min(lastℎ(⟨1), minℎ(⟨2)) = min(1, 2) = 1
ℎ′
0 = min(lastℎ(⟨1), minℎ(⟨⟩1⟨2)) = min(1, 1) = 1

ℎ1 = min(ℎ0, minℎ(⟩1⟨⟩1⟩0)) = min(1, 0) = 0
ℎ′
1 = min(ℎ′

0, minℎ(⟩1⟩0)) = min(1, 0) = 0

‖s‖sub1 = 1 > −1 = ‖t‖sub1 ∧ ‖s‖subx = ‖t‖subx ∀x < 1 ⇒ s ≺1 t ℎi=ℎ′
i∀i ∧ first(�∖�)=⟨<⟨⟩=first(�∖�) ⇒ �∼� ∧ �⊂� ⇒ �<�

(b) – Rule 2: leftmost precedence, RE (a)|(a) and string a.

s = T 1(T 2(a0, ⊥0))

T 1

T 2

a0 ⊥0

⟨1 ⟩0

⟨2 ⟩1

⟨2 ⟩1

t = T 1(T 2(a0, ⊥0), T 2(⊥0, �0))

T 1

T 2

a0 ⊥0

T 2

⊥0 �0

⟨1 ⟩0

⟨2 ⟩1 ⟨2 ⟩1
� = Φ0(s) =

⎴⎴
⟨1⟨2 a

⎴⎴
⟩1⟩0

� = Φ0(t) =
⎴⎴
⟨1⟨2 a

⎴⏞⏞⏞⏞⏞⎴
⟩1⟨2⟩1⟩0

traces(�, �) ∶
⎡
⎢⎢⎣

ℎ0 = ℎ′
0 = −1

ℎ1 = min(lastℎ(⟩1), minℎ(⟩0)) = min(1, 0) = 0
ℎ′
1 = min(lastℎ(⟩1), minℎ(⟨2⟩1⟩0)) = min(1, 0) = 0

‖s‖sub2 = ∞ > 0 = ‖t‖sub2 ∧ ‖s‖subx = ‖t‖subx ∀x < 2 ⇒ s ≺2 t ℎi=ℎ′
i∀i ∧ first(�∖�)=⟩<⟨=first(�∖�) ⇒ �∼� ∧ �⊂� ⇒ �<�

(c) – Rule 3: no optional empty repetitions, RE (a|�)0,∞ and string a.

s = T 1(⊥2)

T 1

⊥2

⟨1 ⟩0

⟨⟩1

t = T 1(T 2(�0))

T 1

T 2

⊥0 �0

⟨1 ⟩0

⟨2 ⟩1

� = Φ0(s) =
⎴⏞⏞⏞⎴
⟨1⟨⟩1⟩0

� = Φ0(t) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟩1⟩0

traces(�, �) ∶[
ℎ0 = min(lastℎ(⟨1), minℎ(⟨⟩1⟩0)) = min(1, 0) = 0
ℎ′
0 = min(lastℎ(⟨1), minℎ(⟨2⟩1⟩0)) = min(1, 0) = 0

‖s‖sub2 = 0 > −1 = ‖s‖sub2 ∧ ‖s‖subx = ‖t‖subx ∀x < 2 ⇒ t ≺2 s ℎi=ℎ′
i∀i ∧ first(�∖�)=⟨⟩>⟨=first(�∖�) ⇒ �∼� ∧ �⊂� ⇒ �<�

(d) – Rule 4: empty match is better than no match, RE (a|�)0,∞ and string �.

FIGURE 3 Examples: (a) – (d): four main rules of POSIX comparison.
Next, we go from comparison of PEs to comparison of TNFA paths. We extend the notion of order from PEs to paths.
Definition 17 (Path). A path in TNFA (Σ, Q, T ,Δ, q0, qf) is a sequence of transitions {(qi, ai, bi, qi+1)}n−1i=1 ⊆ Δ, where n ∈ ℕ.
Every path induces a string of alphabet symbols and a mixed string of alphabet symbols and tags that corresponds to a PE
fragment: positive opening tags map to ⟨, positive closing tags map to ⟩, and negative tags map to ⟨⟩. We write q1

w|�
←→ qn to

denote that a path from q1 to qn induces an alphabet string w and a PE fragment �.

11

Definition 18 (Path comparison). A path �1 = q1
w|�
←→ q2 is less than a path �2 = q1

w|�
←→ q3, denoted �1 < �2, if � < �.

Definition 19 (Minimal path). A path in TNFA for IRE e is minimal if it induces � = PE(t) for some minimal tree t ∈ PT (e).
Definition 20 (Ambiguous paths). Paths q1

w|�
←→ q2 and q′1

w′|�
←→ q′2 are ambiguous if q1 = q′1, q2 = q′2 and w = w′.

Definition 21 (Join point). For paths �1 = q1
w1|�
←→ q

w2|

←→ q2 and �2 = q1

w1|�
←→ q

w3|�
←→ q3 that have ambiguous prefixes q1

w1|�
←→ q

and q1
w1|�
←→ q, state q is a join point (a state where ambiguous prefixes meet).

In order to justify our TNFA simulation algorithm, we need to show that PEs induced by TNFA paths can be compared incre-
mentally (otherwise we would have to keep full-length PEs, which requires the amount of memory proportional to the length
of input). Justification of incremental comparison consists of two parts: the following lemma 1 justifies comparison between
frames, and lemmas 2, 3, 4 in section 4 justify comparison at join points inside of one frame (this is necessary as the number of
paths in closure may be exponential in the number of states).
Lemma 1 (Frame-by-frame comparison of PEs). If �, � are comparable PE prefixes, c is an alphabet symbol and
 is a single-
frame PE fragment, then � < � implies �c
 < �c
 .

4 CLOSURE CONSTRUCTION

The problem of constructing �-closure with POSIX disambiguation can be formulated as a shortest path problem on a directed
graph with weighted arcs. In our case weight is not a number — it is the PE fragment induced by the path. We give two
alternative implementations of closure(): closure gor1() and closure gtop(). The first algorithm, GOR1, is named after the
well-known Goldberg-Radzik algorithm15. The second algorithm, GTOP, is an abbreviation of “global topological order”. Both
algorithms have the usual structure of shortest-path finding algorithms. Each algorithm starts with a set of initial configura-
tions, an empty queue and an empty set of resulting configurations. Initial configurations are enqueued and the algorithm loops
until the queue becomes empty. At each iteration it dequeues a configuration (q2, q1, u, d) and scans �-transitions from state q.
For a transition (q2, , �, q3) it constructs a new configuration (q3, q1, v, d) that combines u and � in an extended path v. If the
resulting set already contains another configuration for state q3, the algorithm chooses the configuration which has a better path
from POSIX perspective. Otherwise it adds the new configuration to the resulting set. If the resulting set has been changed, the
new configuration is enqueued for further scanning. Eventually all states in the �-closure are explored, no improvements can be
made, and the algorithm terminates.

The difference between GOR1 and GTOP is in the order they inspect configurations. Both algorithms are based on the idea
of topological ordering. Unlike other shortest-path algorithms, their queuing discipline is based on graph structure, not on
the distance estimates. This is crucial, because we do not have any distance estimates: paths can be compared, but there is
no absolute “POSIX-ness” value that we can attribute to each path. GOR1 is described in15. It uses two stacks and makes a
number of passes; each pass consists of a depth-first search on the admissible subgraph followed by a linear scan of states that
are topologically ordered by depth-first search. The algorithm is one of the most efficient shortest-path algorithms16. n-Pass
structure guarantees worst-case complexity O(nm) of the Bellman-Ford algorithm, where n is the number of states and m is the
number of transitions in the �-closure (both can be approximated by TNFA size)17. GTOP is a simple algorithm that maintains
one global priority queue (e.g. a binary heap) ordered by the topological index of states (for graphs with cycles, we assume
reverse depth-first post-order). Since GTOP does not have the n-pass structure, its worst-case complexity is not clear. However,
it is much simpler to implement and in practice it performs almost identically to GOR1 on graphs induced by TNFA �-closures.
On acyclic graphs, both GOR1 and GTOP have linear O(n + m) complexity.

The general proof of correctness of shortest-path algorithms is out of the scope of this paper. However, we need to justify the
application of these algorithms to our problem. In order to do that, we recall the framework for solving shortest-path algorithms
based on closed semirings described in12 (section 26.4) and show that our problem fits into this framework. A semiring is a
structure (K, ⊕,⊗, 0, 1), where K is a set,⊕∶K ×K → K is an associative and commutative operation with identity element 0,
⊗∶K×K → K is an associative operation with identity element 1,⊗ distributes over⊕ and 0 is annihilator for⊗. Additionally,
closed semiring requires that ⊕ is idempotent, any countable ⊕-sum of K elements is in K, and associativity, commutativity,

12

1 closure gor1(F =(Σ, Q,M,Δ, q0, qf), C, U,H, P)
2 X = (F ,U,H, P
3 , topsort, linear // stacks of states
4 , result // configuration or ⊥ mapped to a state
5 , status // status of a state (one of OFF , TOP ,LIN)
6 , active // a boolean indicating if a state needs rescan
7 , etrans // �-transitions from a state, in priority order
8 , next // index of the active transition for a state
9) // context
10 result(q) ≡ ⊥
11 status(q) ≡ OFF
12 active(q) ≡ false
13 next(q) ≡ 1
14 for c = (, q, ,) ∈ C sorted by inverted prec() do
15 result(q) = c
16 pusℎ(topsort, q)
17 while topsort is not empty do
18 while topsort is not empty do
19 q = pop(topsort)
20 if status(q) ≠ LIN then
21 status(q) = TOP
22 pusℎ(topsort, q)
23 if ¬scan(X, q, false) then
24 status(q) = LIN
25 pop(topsort)
26 pusℎ(linear, q)
27 while linear is not empty do
28 q = pop(linear)
29 if active(q) then
30 next(q) = 1
31 active(q) = false
32 scan(X, q, true)
33 status(q) = OFF
34 return prune(X)

35 scan(X, q, all)
36 any = false
37 while next(q) ≤ |etrans(q)| do
38 (q, �, �, q′) = etrans(q)[next(q)]
39 next(q) = next(q) + 1
40 (q′′, q, u, d) = result(q)
41 c1 = result(q′)
42 c2 = (q′′, q′, extend patℎ(U, u, �), d)
43 if c1=⊥ ∨ indegree(q′)<2 ∨ less(X, c2, c1) then
44 result(q′) = c2
45 if status(q) = OFF then
46 any = true
47 next(q′) = 1
48 pusℎ(topsort, q′)
49 if ¬all then break
50 else active(q′) = 1
51 return any

52 closure gtop(F =(Σ, Q,M,Δ, q0, qf), C, U,H, P)

53 X = (F ,U,H, P
54 , queue // priority queue of states
55 , result // configuration or ⊥ mapped to a state
56 , status // status of a state (one of IN,OUT)
57 , etrans // �-transitions from a state, in priority order
58) // context
59 result(q) ≡ ⊥
60 status(q) ≡ OUT
61 for c1 = (, q, ,) ∈ C do
62 c2 = result(q)
63 if c2=⊥ ∨ less(X, c1, c2) then
64 result(q) = c1
65 if status(q) ≠ IN then
66 k = topological index(q)
67 insert witℎ priority(queue, q, k)
68 status(q) = IN
69 while queue is not empty do
70 q = extract min(queue)
71 status(q) = OUT
72 for (q, �, �, q′) ∈ etrans(q) do
73 (q′′, q, u, d) = result(q)
74 c1 = result(q′)
75 c2 = (q′′, q′, extend patℎ(U, u, �), d)
76 if c1=⊥ ∨ indegree(q′)<2 ∨ less(X, c2, c1) then
77 result(q′) = c2
78 if status(q′) ≠ IN then
79 k = topological index(q′)
80 insert witℎ priority(queue, q′, k)
81 status(q′) = IN
82 return prune(X)

83 prune(X)
84 return {c ∣ c = (, q, ,) = result(q), q ∈ Q
85 ∧ (q = qf ∨ ∃(q′, a, ,) ∈ Δ ∣ q = q′ ∧ a ∈ Σ)}

86 less(X, c1, c2)
87 (, , l) = compare(c1, c2, U ,H, P)
88 return l < 0

89 prec(X, c1, c2)
90 (q1, , ,) = c1
91 (q2, , ,) = c2
92 return P [q1][q2] < 0

ALGORITHM 2: Closure algorithms GOR1 and GTOP. Context components are addressed without qualification in the
subroutines, e.g. U rather thanX.U . Functions compare() and extend patℎ() are defined in sections 7 and 5. The definition

of pusℎ(), pop(), insert witℎ priority(), extract min(), indegree() and topological index() is omitted for brevity.

13

distributivity and idempotence apply to countable ⊕-sums. Mohri generalizes this definition and notes that either left or right
distributivity is sufficient13. In our case K is the set of closure paths without tagged �-loops: the following lemma 2 and 3
show that, on one hand, paths with tagged �-loops are not minimal, and on the other hand such paths are discarded by the
algorithm, so they can be removed from consideration. Consequently K is finite. We have semiring (K, min, ⋅, ⊥, �), where min
is POSIX comparison of ambiguous paths, ⋅ is concatenation of paths at the join points (subject to restriction that paths do
not contain tagged �-loops and remain within TNFA bounds — concatenation of arbitrary paths is not in K), ⊥ corresponds to
artificial infinitely long path, and � is the empty path. It is easy to see that min is commutative and associative, ⊥ is identity
for min (min(�, ⊥) = min(⊥, �) = �), ⋅ is associative, � is identity for ⋅ (� ⋅ � = � ⋅ � = �), and ⊥ is an annihilator for ⋅
(� ⋅⊥ = ⊥ ⋅� = ⊥). Right distributivity of ⋅ over min for paths with at most one �-loop is given by lemma 4. Idempotence holds
because min(�, �) = �. Since K is finite, the properties for⊕-sums over countable subsets are satisfied.
Lemma 2. Minimal paths do not contain tagged �-loops.
Lemma 3. GOR1 and GTOP discard paths with tagged �-loops.
Lemma 4 (Right distributivity of comparison over concatenation for paths without tagged �-loops). Let �� = q0

u|�
←→ q1 and

�� = q0
u|�
←→ q1 be ambiguous paths in TNFA f for IRE e, and let �
 = q1

�|

←→ q2 be their common �-suffix, such that ���
 and

���
 do not contain tagged �-loops. If � < � then �
 < �
 .

5 TREE REPRESENTATION OF PATHS

In this section we specify the representation of path fragments in configurations and define tag path tree U and the associated
functions. The U -tree is a prefix tree of tags induced by the shortest path tree that is constructed by closure(). Some care is
necessary with TNFA construction in order to ensure the prefix property (subautomata for alternatives should not start with
identical tagged transitions), but that is easy to accommodate and we give the details in section 9. The U -tree can be stored as
an array of nodes (pred, succ, tag) where pred is the index of a predecessor node, succ is an ordered set of successor indices,
and tag is a positive or negative tag. Successor indices are only necessary if the advanced algorithm for update precedence() is
used (section 7), otherwise the succ component can be omitted. Individual paths in the U -tree are addressed by integer indices
of tree nodes (zero index corresponds to the empty path). It is important to use numeric indices rather than pointers to nodes
because it allows the use of the “two-fingers” algorithm that find the fork of two paths (section 7). The prefix tree representation
is space efficient (common path prefixes are not duplicated), and the operation of copying a path (e.g. from one configuration to
another) is as cheap as copying an integer index. This representation was used by multiple researches, e.g. Laurikari mentions
a functional data structure4 and Karper describes it as the flyweight pattern14.
1 empty patℎ tree()
2 return an empty list of tuples (pred, succ, tag)
3 extend patℎ(U, n, t)
4 if t ≠ � then
5 m = lengtℎ(U) + 1
6 insert(U [n].succ, m)
7 append(U, (n, ∅, t))
8 return m
9 else return n

10 unroll patℎ(U, n)
11 s = �
12 while n ≠ 0 do
13 append(s, U [n].tag)
14 n = U [n].pred
15 return reverse(s)

ALGORITHM 3: Operations on tag path tree. The definition of insert(), append() and reverse() is omitted for brevity.

6 REPRESENTATION OF MATCH RESULTS

In this section we show two ways to construct match results: POSIX offsets and a parse tree.

In the case of POSIX offsets, the d-component of a configuration is an array of offsets for each tag. Offsets are updated incre-
mentally at each step by scanning the corresponding path fragment and setting negative tags to −1 and positive tags to the

14

current step number. For negative tags, it is necessary to also set all nested tags to −1. Only the most recent value of each tag is
needed, therefore the offset is updated at most once. At the end of match, the offset array is converted to the representation spec-
ified by the POSIX standard: an array pmatcℎ of offset pairs (rm so, rm eo). Conversion takes into account the mapping of tags
to submatch groups. Section 9 shows the construction of the mappingM from tags to their nested tags and submatch groups.

In the case of a parse tree, the d-component of a configuration is a tagged string that is accumulated at each step, and eventually
converted to a parse tree at the end of match. The resulting parse tree is only partially structured: leaves that correspond to
subexpressions with zero implicit submatch index contain “flattened” substring of alphabet symbols. It is possible to construct
parse trees incrementally as well, but this is more complex and the partial trees may require even more space than tagged strings.
1 initial result(M)
2 d: integer array of size |dom(M)|
3 return d

4 update result(M,C,U, k,)
5 return

{
(q2, q1, u, apply tags(M,U, u, d, k))

6 ∣ (q2, q1, u, d) ∈ C
}

7 apply tags(M,U, u, d, k)
8 done(t) = false ∀t
9 while u ≠ 0 do
10 t = U [u].tag
11 if t > 0 then
12 if ¬done(t) then
13 done(t) = true
14 d[t] = k
15 else
16 for n ∈M(−t).N do
17 if ¬done(n) then
18 done(n) = true
19 d[n] = −1
20 u = U [u].pred
21 return d

22 final result(M,U, u, d, k)
23 d′ = apply tags(M,U, u, d, k)
24 pmatcℎ[0].rm so = 0
25 pmatcℎ[0].rm eo = k
26 for i = 1, |dom(M)|∕2 do
27 for s ∈M(2i).S do
28 pmatcℎ[s].rm so = d′[2i − 1]
29 pmatcℎ[s].rm eo = d′[2i]
30 return pmatcℎ

31 initial result()
32 return �

33 update result(, C, U, , a)
34 return

{
(q2, q1, u, d ⋅ unroll patℎ(U, u) ⋅ a)

35 ∣ (q2, q1, u, d) ∈ C
}

36 parse tree(u, i)
37 if u = (2i−1) ⋅ (2i) then
38 return T i(�)
39 if u = (1−2i) ⋅… then
40 return T i(⊥)
41 if u = (2i−1) ⋅ a1… an ⋅ (2i) ∧ a1,… , an ∈ Σ then
42 return T i(a1,… , an)
43 if u = (2i−1) ⋅ �1… �m ⋅ (2i) ∧ �1 = 2j−1 ∈ T then
44 n = 0, k = 1
45 while k ≤ m do
46 l = k
47 while |�k+1| > 2j do k = k + 1
48 n = n + 1
49 tn = parse tree(�l… �k, j)
50 return T i(t1,… , tn)
51 return ⊥ // ill-formed PE
52 final result(, U , u, d,)
53 return parse tree(d ⋅ unroll patℎ(U, u), 1)

ALGORITHM 4: Construction of match results: POSIX offsets (on the left) and parse tree (on the right).

7 DISAMBIGUATION PROCEDURES

In this section we define disambiguation procedures compare() and update precedence(). The pseudocode follows definition 16
closely and relies on the prefix tree representation of paths given in section 6. In order to find fork of two paths in compare() we
used the so-called “two-fingers” algorithm, which is based on the observation that parent index is always less than child index.
Given two indices n1 and n2, we continuously set the greater index to its parent until the indices become equal, at which point
we have either found fork or the root of U -tree. We track minimal height of each path along the way and memorize the pair of
indices right after the fork — they are used to determine the leftmost path in case of equal heights.

15

1 compare(c1, c2, U ,H, P)
2 (, q1, u1,) = c1
3 (, q2, u2,) = c2
4 if q1 = q2 ∧ u1 = u2 then return (∞,∞, 0)
5 fork = (q1 = q2)
6 if fork then ℎ1 = ℎ2 = ∞
7 else ℎ1 = H[q1][q2], ℎ2 = H[q2][q1]
8 u′1 = u

′
2 = ⊥

9 while u1 ≠ u2 do
10 if u1 > u2 then
11 ℎ1 = min(ℎ1, ℎeigℎt(U [u1].tag))
12 u′1 = u1, u1 = U [u1].pred
13 else
14 ℎ2 = min(ℎ2, ℎeigℎt(U [u2].tag))
15 u′2 = u2, u2 = U [u2].pred
16 if u1 ≠ ⊥ then
17 ℎ = ℎeigℎt(U [u1].tag)
18 ℎ1 = min(ℎ1, ℎ), ℎ2 = min(ℎ2, ℎ)
19 if ℎ1 > ℎ2 then l = −1
20 else if ℎ1 < ℎ2 then l = 1
21 else if ¬fork then l = P [q1][q2]
22 else l = leftprec(u′1, u

′
2, U)

23 return (ℎ1, ℎ2, l)

24 leftprec(u1, u2, U)
25 if u1 = u2 then return 0
26 if u1 = ⊥ then return −1
27 if u2 = ⊥ then return 1
28 t1 = U [u1].tag, t2 = U [u2].tag
29 if t1 < 0 then return 1
30 if t2 < 0 then return −1
31 if t1mod 2 ≡ 0 then return −1
32 if t2mod 2 ≡ 0 then return 1
33 return 0

34 update precedence(F , C, U,H, P)
35 for c1 = (q1, , ,) ∈ C do
36 for c2 = (q2, , ,) ∈ C do
37 (ℎ1, ℎ2, l) = compare(c1, c2, U ,H, P)
38 H ′[q1][q2] = ℎ1, P ′[q1][q2] = l
39 H ′[q2][q1] = ℎ2, P ′[q2][q1] = −l
40 return (H ′, P ′)

41 update precedence(F , C, U,H, P)
42 stack ∶ empty stack of U -tree indices
43 level ∶ empty array of tuples (q′, q, u, ℎ)
44 next ∶ active successor for a given U -tree index
45 next(u) ≡ 1
46 i = 0
47 pusℎ(stack, 0)
48 while stack is not empty do
49 u = pop(stack)
50 if next(u) < k then
51 pusℎ(stack, u)
52 pusℎ(stack, U [u].succ[next(u)])
53 next(u) = next(u) + 1
54 continue
55 ℎ = ℎeigℎt(U [u].tag), i1 = i
56 for (q′, q, u1,) ∈ C ∣ u1 = u do
57 i = i + 1, level[i] = (q′, q, ⊥, ℎ)
58 for j1 = i1 + 1, i do
59 for j2 = j1, i do
60 (q′1, q1, ,) = level[j1]
61 (q′2, q2, ,) = level[j2]
62 if u = 0 ∧ q1 ≠ q2 then
63 ℎ1 = H[q1][q2], ℎ2 = H[q2][q1]
64 l = P [q1][q2]
65 else ℎ1 = ℎ2 = ℎ, l = 0
66 H ′[q′1][q

′
2] = ℎ1, P

′[q′1][q
′
2] = l

67 H ′[q′2][q
′
1] = ℎ2, P

′[q′2][q
′
1] = −l

68 for u′ ∈ U [u].succ in reverse do
69 i2 = i1
70 while i2 > 0 ∧ level[i2].u = u′ do i2 = i2 − 1

71 for j1 = i2, i1 do
72 level[j1].ℎ = min(level[j1].ℎ, ℎ);
73 for j2 = i1, i do
74 (q′1, q1, u1, ℎ1) = level[j1]
75 (q′2, q2, u2, ℎ2) = level[j2]
76 if u = 0 ∧ q1 ≠ q2 then
77 ℎ1 = min(ℎ1,H[q1][q2])
78 ℎ2 = min(ℎ2,H[q2][q1])
79 if ℎ1 > ℎ2 then l = −1
80 else if ℎ1 < ℎ2 then l = 1
81 else if q1 ≠ q2 then l = P [q1][q2]
82 else l = leftprec(u1, u2, U)
83 H ′[q′1][q

′
2] = ℎ1, P

′[q′1][q
′
2] = l

84 H ′[q′2][q
′
1] = ℎ2, P

′[q′2][q
′
1] = −l

85 i1 = i2
86 for j = i1, i do level[j].u = u
87 return (H ′, P ′)

ALGORITHM 5: Disambiguation procedures. Function ℎeigℎt() gives the height of a tag; its definition is omitted for
brevity (it can be computed in one top-down pass over IRE when constructing the TNFA, see section 9).

We give two alternative algorithms for update precedence(): a simple one with O(m2 t) complexity (on the left) and a complex
one with O(m2) complexity (on the right), where m is the number of states in the �-closure and t is the number of tags. The
worst case is demonstrated by RE ((a|�)0,k)0,∞ where k ∈ ℕ, for which the simple algorithm takes O(k3) time and the complex

16

algorithm takes O(k2) time. The idea of the complex algorithm is to avoid repeated re-scanning of path prefixes in the U -tree. It
makes one pass over the tree, constructing an array level of items (q′, q, u, ℎ), where q′ and q are target and origin states (as in
configurations), u is the current tree index, and ℎ is the current minimal height. One item is added per each closure configuration
(q′, q, u, d) when traversal reaches the tree node with index u. After a subtree has been traversed, the algorithm scans level
items added during traversal of this subtree (such items are distinguished by their u-component), sets their ℎ-component to the
minimum of ℎ and the height of tag at the current node, and computes the new value of H and P matrices for each pair of
target states in items from different branches. After that, u-component of all scanned items is downgraded to the tree index of
the current node (erasing the difference between items from different branches).

8 LAZY DISAMBIGUATION

Most of the disambiguation overhead in our algorithm comes from updating theH and P matrices at each step. It is all the more
unfortunate since many comparisons performed by update precedence() are useless — the compared paths may never meet. In
fact, if the input is unambiguous, all comparisons are useless. A natural idea, therefore, is to compare paths only in case of a
real ambiguity (when they meet in closure) and avoid the computation of precedence matrices altogether. We can do it with a
few modifications to our original algorithm. First, we no longer need theH and P matrices and update precedence() function.
Instead, we introduce a cache Z that maps a pair of U -tree indices (u1, u2) to a triple of precedence values (ℎ1, ℎ2, l). The Z-
cache stores the “useful” part of H and P matrices on multiple preceding steps. It is populated lazily during disambiguation
and allows us to avoid re-computing the same values multiple times. Second, we need to modify the U -tree representation of
paths in the following way: successor indices are no longer needed (they are only used in the advanced update precedence()
algorithm), and the U -tree nodes must be augmented with the current step and the origin state: (pred, tag, step, orig). Third,
instead of setting the u-component of configurations to zero at each step of the matcℎ() algorithm in section 2, we need to set
it to the u-component of the parent configurations, so that paths are accumulated rather than reset at each step. Fourth, we no
longer need to call update result() at each step — this can be done once at the end of match. The only part of the algorithm
that requires non-trivial change is the compare() function, which is defined below via co-recursive functions compare1() that
populates the Z-cache and compare2() that recurses one frame back, or stops if the fork has been reached.
1 compare(c1, c2, U ,Z)
2 (, , u1,) = c1
3 (, , u2,) = c2
4 return compare1(u1, u2, U ,Z)

5 compare1(u1, u2, U ,Z)
6 if Z(u1, u2) = ⊥ then
7 Z(u1, u2) = compare2(u1, u2, U ,Z)
8 return Z(u1, u2)

9 compare2(u1, u2, U ,Z)
10 if u1 = u2 then return (∞,∞, 0)
11 ℎ1 = ℎ2 = ∞
12 q1 = U [u1].orig, q2 = U [u2].orig
13 k1 = U [u1].step, k2 = U [u2].step, k = max(k1, k2)
14 fork = (q1 = q2) ∧ (k1 = k2)
15 u′1 = u

′
2 = ⊥

16 while u1 ≠ u2 ∧ (k1 ≥ k ∨ k2 ≥ k) do
17 if k1 ≥ k ∧ (u1 > u2 ∨ k2 < k) then
18 ℎ1 = min(ℎ1, ℎeigℎt(U [u1].tag))
19 u′1 = u1, u1 = U [u1].pred, k1 = U [u1].step
20 else
21 ℎ2 = min(ℎ2, ℎeigℎt(U [u2].tag))
22 u′2 = u2, u2 = U [u2].pred, k2 = U [u2].step
23 if ¬fork then
24 (ℎ′1, ℎ

′
2, l) = compare1(u1, u2, U ,Z)

25 ℎ1 = min(ℎ1, ℎ′1), ℎ2 = min(ℎ2, ℎ
′
2)

26 else if u1 ≠ ⊥ then
27 ℎ = ℎeigℎt(U [u1].tag)
28 ℎ1 = min(ℎ1, ℎ), ℎ2 = min(ℎ2, ℎ)
29 if ℎ1 > ℎ2 then l = −1
30 else if ℎ1 < ℎ2 then l = 1
31 else if fork then l = leftprec(u′1, u

′
2, U)

32 return (ℎ1, ℎ2, l)

ALGORITHM 6: Lazy disambiguation procedures (the Z-cache is modified in-place).

17

The problem with this approach is that we need to keep full-length history of each active path: at the point of ambiguity we may
need to look an arbitrary number of steps back in order to find the fork of ambiguous paths. This may be acceptable for small
inputs (and memory footprint may even be smaller due to the reduction of precedence matrices), but it is infeasible for long or
streaming inputs. A possible solution may be a hybrid approach that uses lazy disambiguation, but every k steps fully calculates
the precedence matrices and “forgets” the path prefixes. Another possible solution is to keep both algorithms and switch between
them depending on the length of input.

9 TNFA CONSTRUCTION

TNFA construction is given by the function tnfa() that accepts IRE e and state qf and returns TNFA for e with the final state qf
(algorithm 7). This precise construction is not necessary for the algorithms to work, but it has a number of important properties.

• Non-essential �-transitions are removed, as they make closure algorithms GOR1 and GTOP slower.
• Bounded repetition en,m is unrolled in a way that duplicates e exactly m times and factors out common path prefixes:
subautomaton for (k+1)-th iteration is only reachable from subautomaton for k-th iteration. For example, a2,5 is unrolled
as aa(�|a(�|a(�|a))), not as aa(�|a|aa|aaa). This ensures that the tag tree build by �-closure is a prefix tree.

• Priorities are assigned so as to make it more likely that depth-first traversal of the �-closure finds short paths before long
paths. This is an optimization that makes GOR1much faster in specific cases with many ambiguous paths that are longest-
equivalent and must be compared by the leftmost criterion. An example of such case is (((�)0,k)0,k)0,k) for some large k.
Because GOR1 has a depth-first component, it is sensitive to the order of transitions in TNFA. If it finds the shortest path
early, then all other paths are just canceled at the first join point with the shortest path (because there is no improvement
and further scanning is pointless). In the opposite case GOR1 finds long paths before short ones, and whenever it finds an
improved (shorter) path, it has to schedule configurations for re-scan on the next pass. This causes GOR1 to make more
passes and scan more configurations on each pass, which makes it significantly slower. Arguably this bias is a weakness
of GOR1 — GTOP is more robust in this respect.

• When adding negative tags, we add a single transition for the topmost closing tag (it corresponds to the nil-parenthesis,
which has the height of a closing parenthesis). Then we map this tag to the full range of its nested tags, including itself
and the pair opening tag. An alternative approach is to add all nested negative tags as TNFA transitions and get rid of the
mapping, but this may result in significant increase of TNFA size and major slowdown (we observed 2x slowdown on
large tests with hundreds of submatch groups).

• Although for simplicity we use sets to represent nested tags and submatch groups for each tag (the M component of a
TNFA), these sets contain consecutive numbers and in practice can be represented more efficiently as ranges.

• Passing the final state qf in tnfa() function allows to link subautomata in a simple and efficient way. It allows to avoid
tracking and patching of subautomaton transitions that go to the final state (when this final state needs to be changed).

See figure4 for an example of TNFA.

10 COMPLEXITY ANALYSIS

Our algorithm consists of three steps: conversion of RE to IRE, construction of TNFA from IRE and simulation of TNFA on
the input string. We discuss time and space complexity of each step in terms of the following parameters: n — the length of
input, m — the size of RE with counted repetition subexpressions expanded (each subexpression duplicated the number of
times equal to the repetition counter), and t— the number of capturing groups and subexpressions that contain them.

The first step, conversion of RE to IRE, is given by the functions mark() and enum() from section 3. For each sub-RE, mark()
constructs a corresponding sub-IRE, and enum() performs a linear visit of the IRE (which doesn’t change its structure), there-
fore IRE size is O(m). Each subexpression is processed twice (once by mark() and once by enum()) and processing takes O(1)
time, therefore total time is O(m).

18

1 tnfa(e, qf)
2 i = isub(e), J = esub(e) // submatch indices
3 if i = 0 then
4 if e = Eps(0, ∅) then
5 return (Σ, {qf}, ∅, ∅, qf , qf)
6 else if e = Sym(0, ∅, a) ∣a∈Σ then
7 return (Σ, {q0, qf}, ∅, {(q0, a, �, qf)}, q0, qf)
8 else if e = Cat(0, ∅, e1, e2) then
9 (Σ, Q2,M2,Δ2, q2, qf) = tnfa(e2, qf)
10 (Σ, Q1,M1,Δ1, q1, q2) = tnfa(e1, q2)
11 return (Σ, Q1 ∪Q2,M1 ⊔M2,Δ1 ∪ Δ2, q1, qf)
12 else if e = Alt(0, ∅, e1, e2) then
13 (Σ, Q2,M2,Δ2, q2, qf) = tnfa(e2, qf)
14 (Σ, Q′

2,M2,Δ′2, q
′
2, qf) = ntag(M2, qf)

15 (Σ, Q1,M1,Δ1, q1, q′2) = tnfa(e2, q
′
2)

16 (Σ, Q′
1,M1,Δ′1, q

′
1, q2) = ntag(M1, q2)

17 Q = Q1 ∪Q′
1 ∪Q2 ∪Q′

2 ∪ {q0}
18 Δ = Δ1 ∪ Δ′1 ∪ Δ2 ∪ Δ

′
2 ∪ {(q0, 1, �, q1), (q0, 2, �, q

′
1)}

19 return (Σ, Q,M1 ⊔M2,Δ, q0, qf)
20 else if e = Rep(0, ∅, e1, n, m) ∣1<n≤m≤∞ then
21 (Σ, Q1,M1,Δ1, q2, qf) = tnfa(Rep(0,∅,e1,n−1,m−1),qf)
22 (Σ, Q2,M2,Δ2, q1, q2) = tnfa(e1, q2)
23 return (Σ, Q1 ∪Q2,M1 ⊔M2,Δ1 ∪ Δ2, q1, qf)
24 else if e = Rep(0, ∅, e1, 0, m) then
25 (Σ, Q1,M1,Δ1, q1, qf) = tnfa(Rep(0, ∅, e1, 1, m), qf)
26 (Σ, Q′

1,M1,Δ′1, q
′
1, qf) = ntag(M1, qf)

27 Q = Q1 ∪Q′
1 ∪ {q0}

28 Δ = Δ1 ∪ Δ′1 ∪ {(q0, 1, �, q1), (q0, 2, �, q
′
1)}

29 return (Σ, Q,M1,Δ, q0, qf)
30 else if e = Rep(0, ∅, e1, 1,∞) then
31 (Σ, Q1,M1,Δ1, q0, q1) = tnfa(e1,)
32 Q = Q1 ∪ {qf}
33 Δ = Δ1 ∪ {(q1, 1, �, q0), (q1, 2, �, qf)}
34 return (Σ, Q,M1,Δ, q0, qf)
35 else if e = Rep(0, ∅, e1, 1, 1) then return tnfa(e1, qf)
36 else if e = Rep(0, ∅, e1, 1, m) ∣1<m<∞ then
37 (Σ, Q1,M1,Δ1, q1, qf) = tnfa(Rep(0, ∅, e1, 1, m−1), qf)
38 (Σ, Q2,M2,Δ2, q0, q2) = tnfa(e1, q1)
39 Δ = Δ1 ∪ Δ2 ∪ {(q1, 1, �, qf), (q1, 2, �, q2)}
40 return (Σ, Q1 ∪Q2,M1 ⊔M2,Δ, q0, qf)
41 else
42 e′ = fix(0, ∅, e) // reset submatch indices
43 (Σ, Q1,M1,Δ1, q1, q2) = tnfa(e′, q2)
44 Q = Q1 ∪ {q0, qf}
45 N = dom(M1) ⊔ {2i−1,2i} // nested tags
46 M(m) =

{
M1(m) if m ∈ dom(M1)
(J ,N) if m ∈ {2i−1, 2i}

47 Δ = Δ1 ∪ {(q0, 1, 2i−1, q1), (q2, 1, 2i, qf)}
48 return (Σ, Q,M,Δ, q0, qf)

49 ntag(M, qf)
// smallest closing tag represents all tags inM

50 n = min{m ∈ dom(M) ∣ m ≡ 0 mod 2}
51 return (Σ, {q0, qf},M, {(q0, 1,−n, qf)}, q0, qf)

qf

(a) tnfa(Eps(0, ∅), qf)

q0 qf
a∕�

(b) tnfa(Sym(0, ∅, a), qf)

q1 tnfa(e1, q2) q2 tnfa(e2, qf) qf

(c) tnfa(Cat(0, ∅, e1, e2), qf)

q0

q1 tnfa(e1, q′2) q′2 ntag(M
2 , qf)

q′1 ntag(M1, q2) q2
tnfa(e2

, qf)
qf

1∕�

2∕�

(d) tnfa(Alt(0, ∅, e1, e2), qf)

q1 tnfa(e1, q2) q2 tnfa(Rep(0, ∅, e1, n−1, m−1), qf) qf

(e) tnfa(Rep(0, ∅, e1, n, m), qf) ∣1<n≤m≤∞

q0

q1 tnfa(Rep(0, ∅, e1 , 1, m),qf)

q′1
ntag(M1, qf)

qf

1∕�

2∕�

(f) tnfa(Rep(0, ∅, e1, 0, m), qf)

q0 tnfa(e1, q1) q1 qf
2∕�

1∕�

(g) tnfa(Rep(0, ∅, e1, 1,∞), qf)

q0 tnfa(e1, q1) q1 q2 tnfa(Rep(0, ∅, e1, 1, m−1), qf) qf
2∕�

1∕�

(h) tnfa(Rep(0, ∅, e1, 1, m), qf) ∣1<m<∞

q0 q1 tnfa(e′, q2) q2 qf
1∕2i−1 1∕2i

(i) tnfa(e, qf) ∣i≠ 0

q0 qf
1∕ − n

(j) ntag(M, qf)

ALGORITHM 7: TNFA construction. NotationM =M1 ⊔M2 for functions with disjoint domains means that
M(m) =Mi(m) ∀m ∈ dom(Mi), 1 ≤ i ≤ 2. Functions fix, isub and esub are defined on page 6.

19

1

2

3 4

5 6

7

8

9 10

11

12

13

14

25

15

16

17

18

19 20

21

22

23

24

26

27

1∕1

1∕3
1∕�

1∕7

1∕�

2∕�

a∕�

1∕8
2∕�

1∕7

1∕�

2∕�

a∕�

1∕8
2∕�

1∕7

1∕�

2∕�

a∕�

1∕8

1∕6

1∕2

2∕�

1∕�

2∕�

a∕�
2∕�

1∕4
1∕5

1∕�1∕�
1∕−6

1∕�

1∕� 2∕�

M(1) = M(2) =
(
{1}, {1, 2, 3, 4, 5, 6, 7, 8}

)

M(3) = M(4) =
(
{2, 3}, {3, 4}

) M(5) = M(6) =
(
∅, {5, 6, 7, 8}

)

M(7) = M(8) =
(
{4}, {7, 8}

)

FIGURE 4 Example of TNFA for RE (((�|a0,∞))(a|�)0,3).

The second step, TNFA construction, is given by the tnfa() function (algorithm 7). At this step counted repetition is unrolled,
so TNFA may be much larger than IRE. For each subexpressions of the form Rep(i, J , e, k, l) automaton for e is duplicated
exactly l times if l ≠ ∞, or max(1, k) times otherwise (at each step of recursion the counter is decremented and one copy
of automaton is constructed). Since repetition counters are constants, unrolling increases the size of sub-TNFA by a constant
factor. Other tnfa() clauses are in one-to-one correspondence with sub-IRE. Each clause adds only a constant number of states
and transitions (including calls to ntags() and excluding recursive calls). Therefore TNFA contains O(m) states and transitions.
The size of mapping M is O(t), which is O(m). Therefore total TNFA size is O(m). Time complexity is O(m), because each
clause takes O(1) time (excluding recursive calls), and total O(m) clauses are executed.

The third step, TNFA simulation, is given by algorithm 1. Initialization at lines 2-4 takes O(1) time. Main loop at lines 5-11 is
executed at most n times. The size of closure is bounded by TNFA size, which is O(m) (typically closure is much smaller than
that). Each iteration of the loop includes the following steps. At line 6 the call to closure() takes O(m2 t) time if GOR1 from
section 4 is used, because GOR1 makes O(m2) scans (closure contains O(m) states and O(m) transitions), and at each scan we
may need to compare the tag sequences using compare() from section 7, which takesO(t) time (there isO(t) unique tags and we
consider paths with at most one �-loop, so the number of occurrences of each tag is bounded by the repetition counters, which
amounts to a constant factor). At line 7 the call to update result() takes O(m t) time, because closure size is O(m), and the
length of the tag sequence is O(t) as argued above. At line 8 the call to update precedence() takes O(m2) time if the advanced
algorithm from section 7 is used. At line 9 scanning the closure for reachable states takes O(m) time, because closure size is
O(m). The sum of the above steps is O(m2 t), so the total time of loop at lines 5-11 is O(nm2 t). The final call to closure() at
line 12 takes O(m2 t), and final result() at line 14 takes O(m t). The total time taken by matcℎ() is therefore O(nm2 t).

Space complexity of matcℎ() is as follows. The size of the closure is O(m). Precedence matrices H and P take O(m2) space.
Match results take O(m t) space in case of POSIX-style offsets, because the number of parallel results is bounded by the closure
size, and each result takes O(t) space. In case of parse trees, match results take O(mn) space, because each result accumulates
all loop iterations. The size of the U -tree is O(m2) because GOR1 makes O(m2) scans and thus adds no more than O(m2) tags
in the tree. The total space taken by matcℎ() is therefore O(m2) for POSIX-style offsets and O(m(m + n)) for parse trees.

For leftmost-greedy submatch extraction, space complexity is O(m t) and time complexity is O(nm t), because the �-closure is
constructed with a DFS in O(m) time and has O(m) size, and each closure configuration contains O(t) submatch results that
need to be updated.

11 BENCHMARKS

In this section n, m, t have the same meaning as in section 10. We used two groups of benchmarks:
1. Real-world benchmarks (A1 – A12). These REs are designed to evaluate the algorithms in a natural setting. They describe

practical concepts, such as URI or HTTP message headers, and range from very large (containing thousands of characters
and hundreds of capturing groups) to small (containing under a hundred of characters and about five capturing groups).
The input consists of short strings conforming to the RE grammar.

20

2. Artificial benchmarks (B1 – B12 and C1 – C12). These REs are designed to be highly ambiguous and reveal worst-case
behavior and pathological cases for different algorithms. All REs in this group have an alphabet consisting of a single
symbol a, and the input is a long string of as (16K). There are two subgroups in this group:
(a) REs with alternative. Benchmarks B1 – B6 contain REs of the form (ak1 |ak2 |ak3)0,∞, where ki are prime numbers.

Benchmarks B7 – B12 contain their variations with more capturing groups: (((a)k1)|((a)k2)|((a)k3))0,∞. These REs
show the difficulty of POSIX longest-match semantics, because the choice of alternatives varies indefinitely with
the number of as in the input string. For example, consider RE (a2|a3|a5)0,∞: given an input string a...a, submatch
on the last iteration depends on the length of input: it equals aaaaa for a 5n-character string, aa for strings of length
5n − 3 and 5n − 1, and aaa for strings of length 5n − 2 and 5n + 1 (n ∈ ℕ). Variation continues indefinitely with a
period of five characters. The variation period is longer for higher counter values.

(b) REs with concatenation. These benchmarks contain REs of the form (e0,k)0,∞, where e is (a|�) for C1 – C3, (a0,∞)
for C4 – C6, a for C7 – C9 and (a) for C10 – C11. These REs have large �-closure sizes.

We benchmarked the following algorithms:
• LG: the basic leftmost-greedy implementation. It updates offsets at each step of TNFA simulation and runs in O(nm t)
time and O(m t) space. This algorithm has no overhead on disambiguation and serves as a baseline for other algorithms.

• Lazy-LG: a “lazy” version of LG. It accumulates tag history of all simulation steps, updates offsets at the end of match
rather than at each step, and runs in O(nm) time and O(nm) space. This algorithm reduces the overhead on incremental
offset updates, but it requires memory proportional to the size of input.

• Re2-LG: a leftmost-greedy implementation by the Google RE2 library20. This algorithm is used to relate our implemen-
tations to the real world: both RE2C and RE2 are written in C++, so they are comparable. Internally RE2 uses a bunch
of different algorithms: simple cases are optimized, and the results vary considerably from one algorithm to another.

• OS: the main Okui-Suzuki implementation described in this paper. It uses GOR1 and the advanced update precedence()
algorithm. Disambiguation and offset updates are performed eagerly at each step of TNFA simulation and the algorithm
runs in O(nm2 t) time and O(m2) space.

• GTOP-OS: the same as OS, but uses GTOP instead of GOR1.
• Simple-OS: the same as OS, but uses the simple update precedence() algorithm.
• Lazy-OS: the “lazy” version of OS described in section 8. It accumulates tag history of all simulation steps and disam-
biguates on demand, memoizing the results in cache. Offsets are updated at the end of match. The algorithm has the
same O(nm2 t) time complexity as OS (because the �-closure construction takes O(m2 t) time), and its space complexity
is O(nm2) due to the need to store O(m2) tag path tree for each of the n steps. This algorithm reduces the overhead on
incremental offset updates and precedence matrix computation, but it requires memory proportional to the size of input.

• Kuklewicz: the implementation of Kuklewicz algorithm5 as described in11. The main difference with OS is that the
algorithm splits the common tag history into individual tag histories and considers them separately. The algorithm runs
in O(nm t (m + t log(m)) time and O(m t) space.

• Backward: the backward-matching algorithm proposed by Cox6. We had to modify it substantially in order to support
bounded repetition and fix bugs (described in the introduction). We also use a fast forward pass to find the matching
string prefix before running the main backward pass. Naturally, these modifications incur some overhead. The resulting
algorithm is not fully correct, but the errors are rare compared to the original algorithm (about 2.5% of our tests), and the
test cases that trigger errors are more complex.

All algorithms except re2-LG are implemented in the open-source lexer generator RE2C19 in the form of a regular expression
library libre2c, which provides the usual POSIX API of regcomp, regexec and regfree. Individual algorithms are selected
by passing non-standard flags to regcomp: for example, there is a flag that enables leftmost-greedy semantics instead of POSIX
semantics, a flag that enables GTOP instead of GOR1, a flag that enables “lazy” mode, etc. Most of the flags can be combined.
We selected a limited number of combinations for the benchmarks in order to show the impact of each individual feature. Cor-
rectness of our implementation has been tested on a subset of Glenn Fowler test suite18 (we removed tests for backreferences
and start/end anchors), extended by Kuklewicz and further extended by ourselves to some 500 tests.

Benchmark results are shown on figures 5 , 6 and 7 .

21

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewicz

1
0.77
3.25
4.01
3.62
3.35
1.95

68

A1 RFC-7230 compliant HTTP parser (6204 symbols, 185 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewicz

1
0.74
0.17
2.86
2.52
2.42
1.4

17.45

A2 simple HTTP parser (573 symbols, 33 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewicz

1
0.79
1.96
3.13
2.9
2.94
1.64

11.85

A3 RFC-3986 compliant URI parser (3149 symbols, 93 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.86
0.17
3.28
3.05
2.96
2.42
5.35

33.9

A4 simple URI parser (234 symbols, 14 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewicz

1
0.51
1.1
3.87
4.14
4.24

1.21
48.79

A5 RFC-7230 compliant IPv6 parser (2343 symbols, 62 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.76
0.1
3.17
3.42
3.46
2.8

8.79
16.45

A6 simple IPv6 parser (93 symbols, 7 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.77
0.46
3.28
2.88
2.69
1.61
4.77

24.63

A7 IPv4 parser (235 symbols, 6 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.82
0.28
3.97
3.3
3.14
1.83
4.67

19.75

A8 simple IPv4 parser (57 symbols, 5 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewicz

1
0.74
0.41
3.85
3.4
3.07
1.74

11.12

A9 date parser (224 symbols, 14 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.81
0.45
4.01
3.4
3.41
2.01

6.13
32.1

A10 simple date parser (81 symbols, 7 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.82
0.38
3.33
2.87
2.93
1.8

5.89
69.6

A11 Gentoo package atom (117 symbols, 14 captures)

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.79
0.28
3.13
2.77
2.78
1.72
3.65
5.32

A12 simple package atom (45 symbols, 5 captures)

FIGURE 5 Real-world benchmarks (A1 – A12).

22

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.57
0.18
2.87
2.94
3.75
2.47
2.04
2.25

B1 (a2|a3|a5)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.47
0.92
5.61
5.73
13.97

1.72
2.54
2.1

B2 (a7|a13|a19)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.44
0.89
12.7
13.43

41.28
1.3
4.73
2.03

B3 (a29|a41|a53)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.88
0.71
2.68
2.92
3.1
4.66
3.42
3.77

B7 (((a)2)|((a)3)|((a)5))0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.85
0.75
4.21
4.66
8.16
11.98
9.6
3.57

B8 (((a)7)|((a)13)|((a)19))0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.73
0.72
7.73
8.64
19.31
22.5

9.7
3.26

B9 (((a)29)|((a)41)|((a)53))0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.42
0.92

25.52
25.81

85.78
1.32
5.13
2.03

B4 (a67|a83|a103)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.46
0.93

49.63
49.05

170.54
1.27
5.54
2.19

B5 (a127|a151|a179)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.47
1.1

84.31
78.26

260.5
1.16
5.44
2.22

B6 (a199|a239|a271)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.78
0.75
14.55
15.72

40.17
42.22

10.83
3.81

B10 (((a)67)|((a)83)|((a)103))0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.8
0.84

25.79
27.08

70.86
60.26

11.03
3.74

B11 (((a)127)|((a)151)|((a)179))0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.78
0.84

40.13
42.13

108.65
72.39

11.32
4.36

B12 (((a)199)|((a)239)|((a)271))0,∞

FIGURE 6 Artificial benchmarks (B1 — B12).
Highly ambiguous REs with alternative on 16K string of as.

23

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.97
0.33
1.95
2.09
1.49
1
1.24
2.43

C1 ((a|�)0,1)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.11
0.09
3.5
5.39

108.91
5.43

27.46
0.37

C2 ((a|�)0,256)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.06
0.05
4.38
6.32

227.48
4.82

32.78
0.21

C3 ((a|�)0,512)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.86
0.36
1.98
1.86
1.47
0.9
1.23
2.6

C7 (a0,1)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.68
0.65

41.88
43.34

59.69
15.91

2.86
3.33

C8 (a0,256)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.72
0.66

114.81
116.42

136.61
20.02

3.52
3.34

C9 (a0,512)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.95
0.05
1.67
1.72
1.52
2.18
1.33
2.77

C4 ((a0,∞)0,1)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.14
0.08
6.57
6.78

111.69
10.93

58.81
0.67

C5 ((a0,∞)0,256)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.07
0.04
7.6
7.74

237.48
10.21

53
0.39

C6 ((a0,∞)0,512)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.94
0.33
2.15
2.06
1.53
1.03
1.27
2.3

C10 ((a)0,1)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.87
0.61

16.39
17.69

36.86
18.12

2.03
2.68

C11 ((a)0,256)0,∞

LGlazy-LG
re2-LGOSGTOP-OSsimple-OSlazy-OS

Kuklewiczbackward

1
0.86
0.61

48.13
50.45

81.47
19.71

2.17
2.87

C12 ((a)0,512)0,∞

FIGURE 7 Artificial benchmarks (C1 — C12).
Highly ambiguous REs with concatenation on 16K string of as.

24

In order to present benchmark results in a meaningful way, we show the time of each algorithm relative to LG. This allows us
to show the net overhead on POSIX disambiguation. We measured the speed of each algorithm in characters per second and
divided it by the speed of LG (therefore LG time is always equal to 1). We ran benchmarks on Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz machine with 12 cores (we ran in single-threaded mode), 32 GB of RAM, 32K L1d cache, 32K L1i cache,
256K L2 cache, 9216K L3 cache, running Gentoo Linux. We used RE2 version 2019-12-01 and RE2C from Git19 at commit
662b45ef468713f59e667200aacd922f29580c4a.
Memory consumption. We used Massif22 to estimate memory usage. The algorithms can be partitioned in two groups:
those that execute in bounded memory (depending on the size of RE, but not on the length of input), and those that require
memory proportional to the length of input. The first group contains LG, re2-LG, OS, GTOP-OS, simple-OS, Kuklewicz and
backward: these algorithms stay under 50M for all benchmarks, and usually the memory is pre-allocated at the beginning (e.g.
for precedence matrices). The second group contains lazy-LG and lazy-OS: memory consumption of these algorithms grows
with the length of input and reaches peak values for C6 (over 700M for lazy-LG and over 4G for lazy-OS). Both algorithms keep
closure trees for all steps in memory, but the size of the trees is linear in the size of RE for lazy-LG (which uses a simple DFS),
and worst-case quadratic for lazy-OS (which uses GOR1). Lazy-OS also allocates a large disambiguation cache. Our cache
implementation is a red-black tree from the standard C++ library, which incurs a lot of small heap allocations and deallocations
and is not optimal. However, it suffices to show the general problem.
Run-time performance. On real-world RE all algorithms except Kuklewicz and backward perform quite well. Lazy-OS is
the fastest among POSIX implementations, and only ~2x slower than LG. Other OS algorithms (OS, GTOP-OS and simple-OS)
are 3-4x slower than LG, with OS being generally a bit slower due to a more complex implementation. Kuklewicz algorithm is
noticeably slower on large RE, and the backward algorithm is so slow that it timed out on some of the benchmarks. On artificial
benchmarks the results are quite different. Of all POSIX implementations, only the backward algorithm performs reasonably
well. Other algorithms show performance degradation on some of the benchmarks, and simple-OS is particularly slow. In general,
we can observe the following tendencies:

• OS degrades with increased closure size, as shown by B1 – B6, B7 – B12, C7 – C9 and C10 – C12. This is caused by an
O(m2) precedence matrix update algorithm.

• Simple-OS degrades with increased closure size, and much faster than OS, as shown by C1 – C3 and C4 – C6. (it is ~50x
slower than OS on C3). This is caused by an O(m2 t) precedence matrix update algorithm.

• Kuklewicz algorithm degrades with increased closure size, although not as fast as OS (as shown by B7 – B12, C1 – C3
and C4 – C6) and with increased number of tags (compare B1 – B6 with fewer captures to B7 – B12 with more captures),
in particular orbit tags (compare C1 – C3 with an innermost alternative to C4 – C6 with an innermost repetition). On
REs with many capturing groups Kuklewicz algorithm can get very slow (A1, A5). This is caused by an O(m log(m) t2)
precedence matrix update algorithm.

• Backward algorithm degrades with increased number of tags (as shown by A1 – A12, and also observable on B7 – B12
compared to B1 – B6). This is caused by the necessity to copy offset arrays between closure configurations: instead of
using a prefix tree to store tag histories during closure construction, the algorithm stores an array of offsets (a pair of
offsets per tag) in each configuration. GOR1 is asymptotically faster than DFS with backtracking used by the original
implementation6, but it increases the amount of copying (DFS order of graph traversal allows to update and restore a
single offset array in-place). Even with DFS copying is a bottleneck for REs with many capturing groups.

• Lazy-OS degrades with increased input length, increased closure size and ambiguity in RE (it performs well on B1 – B6,
but much worse on B7 – B12 which differ only in capturing parentheses). This is caused by the need to keep all closure
trees in memory and allocate a large disambiguation cache. In highly ambiguous cases the lazy algorithm does all the work
of a non-lazy algorithm, but with the additional overhead on cache lookups/insertions and accumulation of data from the
previous steps.

• GOR1, despite having O(m2 t) worst-case complexity, in practice performs closer to O(m t) and adds less overhead than
updating the precedence matrix (compare B1 – B6 for OS and lazy-OS, which also uses GOR1, but no precedence matrix).

• GOR1 and GTOP performance is similar. GTOP is usually slightly faster on real-world RE (probably because the closure
graphs are simple and GOR1 code is more complex). We failed to find a pathological case for GTOP; this may mean that
we didn’t look hard enough, or that TNFA closures have some special properties that make GTOP efficient.

25

• LG and lazy-LG performance is close to re2-LG, faster on large RE, but slower on small RE. This is explained by the fact
that RE2 uses an optimized bitmap-based implementation for small RE.

12 CONCLUSIONS AND FUTUREWORK

As the benchmarks show, none of the POSIX matching algorithms we considered is perfect, but for each algorithm there are
use cases where it performs better than other algorithms. On the whole though, we can make the following observations. Lazy-
OS is generally the fastest algorithm, but it cannot be used for long inputs due to its unbounded memory consumption. OS is
generally the most robust algorithm: it has the best worst-case time and space complexity, it is reasonably fast, and it can be
used for long inputs (as it executes in bounded memory). Therefore a practical implementation would use a use a combination
of lazy-OS and OS.

It is still an open question to us whether it is possible to combine the elegance of the derivative-based approach to POSIX
disambiguation with the efficiency of NFA-based algorithms. In the derivative-based approach, match results are constructed
in such order that the longest-leftmost result is always first. Perhaps a similar idea can be applied to NFA-based algorithms
in order to reduce the amount of disambiguation they perform. We experimented with recursive descent parsers based on the
ordering idea and constructed a prototype implementation (but it did not result in a faster algorithm).

It would be interesting to apply our approach to automata with counters instead of unrolling bounded repetition.

ACKNOWLEDGMENTS

I want to thank my husband and fellow programmer Sergei, my parents Vladimir and Elina, my teachers Tatyana Leonidovna
and Demian Vladimirovich, and the Belarusian State University. And cheers to the RE2C users! Ulya Trofimovich

References

[1] Ken Thompson, Programming Techniques: Regular expression search algorithm, Communications of the ACM, vol. 11 (6), 1968.
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, & Tools (chapter 3.7.3: Efficiency of NFA Simulation),

2nd edition, Boston, MA, USA: Pearson Addison-Wesley, ISBN 0-321-48681-1, pp. 157-159.
[3] Satoshi Okui and Taro Suzuki, Disambiguation in Regular Expression Matching via Position Automata with Augmented Transitions, International

Conference on Implementation and Application of Automata, pp. 231-240, Springer, Berlin, Heidelberg, 2013.
[4] Ville Laurikari, Efficient submatch addressing for regular expressions, Helsinki University of Technology, 2001.
[5] Chris Kuklewicz, Regular expressions/bounded space proposal, http://wiki.haskell.org/index.php?title=Regular_expressions/Bounded_space_proposal&

oldid=11475, 2007.
[6] Russ Cox, backward POSIX matching algorithm (source code), https://swtch.com/~rsc/regexp/nfa-posix.y.txt, 2009.
[7] Martin Sulzmann, Kenny Zhuo Ming Lu, POSIX Regular Expression Parsing with Derivatives, International Symposium on Functional and Logic

Programming, pp. 203-220, Springer, Cham, 2014.
[8] Martin Sulzmann, Kenny Zhuo Ming Lu, Correct and Efficient POSIX Submatch Extraction with Regular Expression Derivatives, https://www.home.

hs-karlsruhe.de/~suma0002/publications/posix-derivatives.pdf, 2013.
[9] Angelo Borsotti1, Luca Breveglieri, Stefano Crespi Reghizzi, AngeloMorzenti, From Ambiguous Regular Expressions to Deterministic Parsing Automata,

International Conference on Implementation and Application of Automata. Springer, Cham, pp.35-48, 2015.
[10] Fahad Ausaf, Roy Dyckhoff, Christian Urban, POSIX Lexing with Derivatives of Regular Expressions, International Conference on Interactive Theorem

Proving. Springer, Cham, pp. 69-86, 2016.
[11] Ulya Trofimovich, Tagged Deterministic Finite Automata with Lookahead, arXiv:1907.08837 [cs.FL], 2017.
[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to algorithms, 1st edition, MIT Press and McGraw-Hill, ISBN 0-262-03141-8.

http://wiki.haskell.org/index.php?title=Regular_expressions/Bounded_space_proposal&oldid=11475
http://wiki.haskell.org/index.php?title=Regular_expressions/Bounded_space_proposal&oldid=11475
https://swtch.com/~rsc/regexp/nfa-posix.y.txt
https://www.home.hs-karlsruhe.de/~suma0002/publications/posix-derivatives.pdf
https://www.home.hs-karlsruhe.de/~suma0002/publications/posix-derivatives.pdf

26

[13] Mehryar Mohri, Semiring frameworks and algorithms for shortest-distance problems, Journal of Automata, Languages and Combinatorics 7 (2002) 3,
321–350, Otto-von-Guericke-Universitat, Magdeburg, 2002.

[14] Aaron Karper, Efficient regular expressions that produce parse trees, Master’s thesis, University of Bern, 2014.
[15] Andrew V. Goldberg, Tomasz Radzik, A heuristic improvement of the Bellman-Ford algorithm, Elsevier, Applied Mathematics Letters, vol. 6, no. 3, pp.

3-6, 1993.
[16] Boris V. Cherkassky, Andrew V. Goldberg, Tomasz Radzik, Shortest paths algorithms: Theory and experimental evaluation, Springer, Mathematical

programming, vol. 73, no. 2, pp. 129-174, 1996.
[17] Boris V. Cherkassky, Loukas Georgiadis, Andrew V. Goldberg, Robert E. Tarjan, and Renato F. Werneck. Shortest Path Feasibility Algorithms: An

Experimental Evaluation, Journal of Experimental Algorithmics (JEA), 14, 7, 2009.
[18] Glenn Fowler, An Interpretation of the POSIX Regex Standard, https://archive.org/details/glenn_fowler_an_interpretation_of_the_posix_regex_standard,

2003.
[19] RE2C, lexer generator for C/C++. Website: http://re2c.org, source code: http://github.com/skvadrik/re2c.
[20] RE2, regular expression library. Source code: http://github.com/google/re2.
[21] The GNU C library, https://www.gnu.org/software/libc/.
[22] Massif, a heap profiler, http://www.valgrind.org/docs/manual/ms-manual.html.

https://archive.org/details/glenn_fowler_an_interpretation_of_the_posix_regex_standard
http://re2c.org
http://github.com/skvadrik/re2c
http://github.com/google/re2
https://www.gnu.org/software/libc/
http://www.valgrind.org/docs/manual/ms-manual.html

27

APPENDIX

Proof of theorem 1
Lemma 5 (Unique position mapping from all PTs to IRE). If t, s ∈ PT (e) for some IRE e and there is a common position
x ∈ Pos(t) ∩ Pos(s), then x corresponds to the same position x′ ∈ Pos(e) in e for both t and s.
Proof. The proof is by induction on the length of x. Induction basis: x = x′ = Λ (the roots of t and s correspond to the root
of e). Induction step: suppose that for any position x of length |x| < ℎ the lemma is true. We will show that if exists a k ∈ ℕ
such that x.k ∈ Pos(t) ∩ Pos(s), then x.k corresponds to the same position x′.k′ in e for both t and s (for some k′ ∈ ℕ). If e|x′
is an elementary IRE of the form Eps(i, j) or Sym(i, j, a), or if at least one of t|x and s|x is ⊥, then k doesn’t exist. Otherwise
e|x′ is a compound IRE and both t|x and s|x are not ⊥. If e|x′ is an alternative Alt(i, j, e1, e2) or a concatenation Cat(i, j, e1, e2),
then both t|x and s|x have exactly two subtrees, and positions x.1 and x.2 in t and s correspond to positions x′.1 and x′.2 in e.
Otherwise, e|x′ is a repetition Rep(i, j, e1, n, m) and for any k ≥ 1 position x.k in t and s corresponds to position x′.1 in e.
Theorem 1. P-order < is a strict total order on PT (e,w) for any IRE e and string w.

Proof. We need to show that < is transitive and trichotomous.
(1) Transitivity: we need to show that ∀t, s, r ∈ PT (e,w) ∶ (t < s ∧ s < r) ⇐⇒ t < r.

Let t <x s and s <y r for some positions x, y, and let z = min(x, y).
First, we show that ‖t‖posz > ‖r‖posz . If x ≤ y, we have ‖t‖posx > ‖s‖posx (implied by t <x s) and ‖s‖posx ≥ ‖r‖posx (implied
by s <y r ∧ x ≤ y), therefore ‖t‖posx > ‖r‖posx . Otherwise x > y, we have ‖t‖posy > ‖r‖posy (implied by s <y r) and
‖t‖posy = ‖s‖posy (implied by t <x s ∧ y < x), therefore ‖t‖posy > ‖r‖posy .
Second, we show that ∀z′ < z ∶ ‖t‖posz′ = ‖r‖posz′ . We have ‖t‖posz′ = ‖s‖posz′ (implied by t <x s∧z′ < x) and ‖s‖posz′ = ‖r‖posz′(implied by s <y r ∧ z′ < y), therefore ‖t‖posz′ = ‖r‖posz′ .

(2) Trichotomy: we need to show that ∀t, s ∈ PT (e,w) exactly one of t < s, s < t or t = s holds. Consider the set of positions
where norms of t and s disagree X = {x ∈ Pos(t) ∪ Pos(s) ∶ ‖t‖posx ≠ ‖s‖posx }.
(2.1) First case: X ≠ ∅. We show that in this case exactly one of t < s or s < t is true (t ≠ s is obvious).

First, we show that at least one of t < s or s < t is true. Let x = min(X); it is well-defined since X is non-
empty, finite and lexicographically ordered. For all y < x we have ‖t‖posy = ‖s‖posy (by definition of x and because
‖t‖posy = ∞ = ‖s‖posy if y ∉ Pos(t) ∪ Pos(s)). Since ‖t‖posx ≠ ‖s‖posx , we have either t <x s or t <x s.
Second, we show that at most one of t < s or s < t is true, i.e. < is asymmetric: ∀t, s ∈ PT (e,w) ∶ t < s ⇐⇒ s ≮ t.
Suppose, on the contrary, that t <x s and s <y t for some x, y. Without loss of generality let x ≤ y. On one hand
t <x s implies ‖t‖posx > ‖s‖posx . But on the other hand s <y t ∧ x ≤ y implies ‖t‖posx ≤ ‖s‖posx . Contradiction.

(2.2) Second case: X = ∅. We show that in this case t = s.
We have Pos(t) = Pos(s)— otherwise there is a position with norm∞ in only one of the trees. Therefore t and s
have identical node structure. By lemma 5 any position in t and s corresponds to the same position in e. Since any
position in e corresponds to a unique explicit submatch index, it must be that submatch indices of all nodes in t and
s coincide. Consider some position x ∈ Pos(t). If x corresponds to an inner node, then both t|x and s|x are of the
form T i(…). Otherwise, x corresponds to a leaf node, which can be either ⊥ or � or �. Since all three have different
norms (−1, 0 and 1 respectively), and since ‖t‖posx = ‖s‖posx , it must be that t|x and s|x are identical.

Proof of theorem 2
Lemma 6. If t, s ∈ PT (e,w) for some IRE e and string w, then t ∼ s⇔ ∀x ∶ ‖t‖subx = ‖s‖subx .
Proof. Forward implication: let t ∼ s and suppose, on the contrary, that ∃x = min{y ∣ ‖t‖suby ≠ ‖s‖suby }, then either t ≺x s (if
‖t‖subx > ‖s‖subx) or s ≺x t (if ‖t‖subx < ‖s‖subx), both cases contradict t ∼ s. Backward implication: ∀x ∶ ‖t‖subx = ‖s‖subx implies
∄x ∶ t ≺x s and ∄y ∶ s ≺y t, which implies t ∼ s.

28

Theorem 2. S-order ≺ is a strict weak order on PT (e,w) for any IRE e and string w.

Proof. We need to show that ≺ is asymmetric and transitive, and incomparability relation ∼ is transitive.
(1) Asymmetry: we need to show that ∀t, s ∈ PT (e,w) ∶ t ≺ s ⇐⇒ s ⊀ t.

Suppose, on the contrary, that t ≺x s and s ≺y t for some x, y. Without loss of generality let x ≤ y. On one hand t ≺x s
implies ‖t‖subx > ‖s‖subx . But on the other hand s ≺y t ∧ x ≤ y implies ‖t‖subx ≤ ‖s‖subx . Contradiction.

(2) Transitivity: we need to show that ∀t, s, r ∈ PT (e,w) ∶ (t ≺ s ∧ s ≺ r) ⇐⇒ t ≺ r.
Let t ≺x s and s ≺y r for some positions x, y, and let z = min(x, y).
First, we show that ‖t‖subz > ‖r‖subz . If x ≤ y, we have ‖t‖subx > ‖s‖subx (implied by t ≺x s) and ‖s‖subx ≥ ‖r‖subx (implied
by s ≺y r ∧ x ≤ y), therefore ‖t‖subx > ‖r‖subx . Otherwise x > y, we have ‖t‖suby > ‖r‖suby (implied by s ≺y r) and
‖t‖suby = ‖s‖suby (implied by t ≺x s ∧ y < x), therefore ‖t‖suby > ‖r‖suby .
Second, we show that ∀z′ < z ∶ ‖t‖subz′ = ‖r‖subz′ . We have ‖t‖subz′ = ‖s‖subz′ (implied by t ≺x s∧z′ < x) and ‖s‖subz′ = ‖r‖subz′(implied by s ≺y r ∧ z′ < y), therefore ‖t‖subz′ = ‖r‖subz′ .

(3) Transitivity of incomparability: we need to show that ∀t, s ∈ PT (e,w) ∶ (t ∼ s ∧ s ∼ r) ⇐⇒ t ∼ r.
By forward implication of lemma 6 t ∼ s ⇒ ∀x ∶ ‖t‖subx = ‖s‖subx and s ∼ r ⇒ ∀x ∶ ‖s‖subx = ‖r‖subx , therefore
(t ∼ s ∧ s ∼ r)⇒ ∀x ∶ ‖t‖subx = ‖r‖subx ⇒ t ∼ u by backward implication of lemma 6.

Proof of Theorem 3
Lemma 7 (Comparability of subtrees). For a given IRE e, string w and position x, if t, s ∈ PT (e,w), x ∈ Sub(t) ∪Sub(s) and
‖t‖suby = ‖s‖suby ∀y ≤ x, then ∃e′, w′ ∶ t|x, s|x ∈ PT (e′, w′).
Proof. By induction on the length of x. Induction basis: x = Λ, let e′ = e and w′ = w. Induction step: suppose that the lemma
is true for any position x of length |x| < ℎ, we will show that it is true for any position x.k of length ℎ (k ∈ ℕ). Assume that
x.k ∈ Sub(t) ∩ Sub(s) (otherwise either x.k ∉ Sub(t) ∪ Sub(s), or exactly one of ‖t‖subx.k , ‖s‖subx.k is∞— in both cases lemma
conditions are not satisfied). Then both t|x and s|x have at least one subtree: let t|x = T (t1,… , tn) and s|x = T (s1,… , sm),
where n, m ≥ k. By induction hypothesis ∃e′, w′ ∶ t|x, s|x ∈ PT (e′, w′). We have w′ = str(t1)… str(tn) = str(s1)… str(sm).
We show that str(tk) = str(sk). Consider positions x.j for j ≤ k. By definition the set of submatch positions contains siblings,
therefore x.j ∈ Sub(t) ∩ Sub(s). By lemma conditions ‖t‖subx.j = ‖s‖subx.j (because x.j ≤ x.k), therefore |str(t1)… str(tk−1)|
=
∑k−1
j=1 ‖t‖subj =

∑k−1
j=1 ‖s‖subj = |str(s1)… str(sk−1)| and |str(tk)| = |str(sk)|. Consequently, str(tk) and str(sk) start and end at

the same character inw′ and therefore are equal. Finally, have t|x.k, s|x.k ∈ PT (r|x.k, str(tk)) and induction step is complete.
Theorem 3. Let tmin be the <-minimal tree in PT (e,w) for some IRE e and string w, and let Tmin be the class of ≺-minimal
trees in PT (e,w). Then tmin ∈ Tmin.

Proof. Consider any t ∈ Tmin. From t we can construct another tree t′ in the following way. Consider all positions x ∈ Sub(t)
which are not proper prefixes of another position in Sub(t). For each such position, t|x is itself a PT for some sub-IRE e′ and
substringw′: t|x ∈ PT (e′, w′). Let t′min be the<-minimal tree in PT (e′, w′) and substitute t|x with t′min. Let t′ be the tree resultingfrom all such substitutions (note that they are independent of the order in which we consider positions x). Since substitutions
preserve s-norm at submatch positions, we have t′ ∈ Tmin. We will show that t′ = tmin.
Suppose, on the contrary, that t′ ≠ tmin. Since tmin is <-minimal, it must be that tmin <x t′ for some decision position x. By
definition it means that ‖tmin‖posx > ‖t′‖posx and ‖tmin‖posy = ‖t′‖posy ∀y < x. It follows that all positions y ≤ x that are in Pos(tmin)
are also in Pos(t′), otherwise we get a contradiction ‖t′‖posy = ∞ > ‖tmin‖posy . By lemma 5 position y corresponds to the same
position in the IRE e for both tmin and t′. Consequently, any y ≤ x is either a submatch position in both tmin and t′, or in neither
of them. Let x′ be the longest prefix of x in Sub(t′). Since x′ ≤ x, by the above reasoning x′ is also in Sub(tmin). All prefixes of
a submatch position are also submatch positions, therefore for y ≤ x′ s-norms coincide with p-norms: ‖tmin‖suby = ‖tmin‖posy and
‖t′‖suby = ‖t′‖posy . It follows that x′ ≠ x, otherwise tmin <x t′ implies tmin ≺x t′, which contradicts to t′ ∈ Tmin. Therefore x′ < x,

29

and since ‖tmin‖posy = ‖t′‖posy ∀y < x and s-norms coincide with p-norms, we have ‖tmin‖suby = ‖t′‖suby ∀y ≤ x′. Then by lemma
7 subtrees t′|x′ and tmin|x′ are comparable: ∃e′, w′ ∶ t′|x′ , tmin|x′ ∈ PT (e′, w′). By construction of t′, subtree t′|x′ is <-minimal
in PT (e′, w′), but at the same time tmin <x′.x′′ t′ implies tmin|x′ <x′′ t′|x′ . Contradiction.
Theorem 4. Let e, e′ be two REs, such that e′ is constructed from e by adding a pair of parentheses around some subexpression,
and let ē = IRE(e) and ē′ = IRE(e′). If Tmin, T ′min are the classes of ≺-minimal trees in PT (ē, w) and PT (ē′, w) respectively
for some string w, then T ′min ⊆ Tmin.

Proof. First, note that adding parentheses in RE does not affect the set of IRE positions: we have Pos(ē) = Pos(ē′). Conse-
quently, p-order on PT (ē, w) and PT (ē′, w) is identical, and the <-minimal tree tmin is the same in both cases. By theorem 3 we
have tmin ∈ Tmin and tmin ∈ T ′min, therefore the classes of ≺-minimal trees have at least one common tree: tmin ∈ Tmin ∩ T ′min
Second, note that adding parentheses in RE may only increase the set of IRE submatch positions: we have Sub(ē) ⊆ Sub(ē′).
Let S, S′ denote Sub(tmin) for ē and ē′ respectively, then we have S ⊆ S′.
Consider any tree t ∈ T ′min. It is incomparable with tmin in the s-order on PT (ē′, w), therefore by lemma 6 (forward impli-
cation) all s-norms at positions in S′ in t and tmin are equal: ‖t‖subx = ‖tmin‖subx ∀x ∈ S′. Since S ⊆ S′, it follows that
‖t‖subx = ‖tmin‖subx ∀x ∈ S. Therefore by lemma 6 (backward implication) t is incomparable with tmin in the s-order on PT (ē, w),
and consequently t ∈ Tmin. Since t is an arbitrary tree in T ′min, it follows that T ′min ⊆ Tmin.

Proof of Theorem 5
Lemma 8. Let s, t ∈ PT (e,w) for some IRE e and string w. If s ∼ t, then Φℎ(s) = Φℎ(t) ∀ℎ.
Proof. By induction on the height of e. Induction basis: for height 1 we have |PT (e,w)| ≤ 1 ∀w, therefore s = t and Φℎ(s) =
Φℎ(t). Induction step: height is greater than 1, therefore s = T o(s1,… , sn) and t = T o(t1,… , tm). If o = 0, thenΦℎ(s) = str(s) =
w = str(t) = Φℎ(t). Otherwise o ≠ 0. By lemma 6 we have s ∼ t ⇒ ‖s‖subx = ‖t‖subx ∀x. This implies n = m (otherwise
the norm of subtree at position min(n, m) + 1 is ∞ for only one of s, t). Therefore Φℎ(s) = ⟨ℎ+1Φℎ+1(s1),… ,Φℎ+1(sn)⟩ℎ and
Φℎ(t) = ⟨ℎ+1Φℎ+1(t1),… ,Φℎ+1(tn)⟩ℎ. It suffices to show that ∀i ≤ n ∶ Φℎ+1(si) = Φℎ+1(ti). We have ‖si‖subx = ‖ti‖subx ∀x
(implied by ‖s‖subx = ‖t‖subx ∀x), therefore by lemma 6 si ∼ ti, and by lemma 7 ∃e′, w′ ∶ si, ti ∈ PT (e′, w′), where the height
of e′ is less than the height of e. By induction hypothesis Φℎ+1(si) = Φℎ+1(ti).

Lemma 9. Let s, t ∈ PT (e,w) for some IRE e and string w. If s ≺x t and |x| = 1, then Φℎ(s) < Φℎ(t) ∀ℎ.
Proof. By lemma conditions |x| = 1, therefore x ∈ ℕ. At least one of s|x and t|x must exist (otherwise ‖s‖subx = ∞ = ‖t‖subxwhich contradicts s ≺x t), therefore e is a compound IRE and s, t can be represented as s = T o(s1,… , sn) and t = T o(t1,… , tm)
where o ≠ 0 because Λ is a prefix of decision position x. Let k be the number of frames and let j be the fork, then:

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sn)⟩ℎ = �0a1… aj�j
|||
jaj+1… ak
k

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tm)⟩ℎ = �0a1… aj�j
||| �jaj+1… ak�k

Consider any i < x (i ∈ ℕ). By lemma conditions s ≺x t, therefore ‖s‖suby = ‖t‖suby ∀y < x. In particular ‖si‖suby = ‖ti‖suby ∀y,
therefore by lemma 6 si ∼ ti, therefore by lemma 8Φℎ+1(si) = Φℎ+1(ti). Let traces(Φℎ(s),Φℎ(t)) =

(
(ℎ0,… , ℎk), (ℎ′0,… , ℎ′k)

).
(1) Case∞ = ‖s‖subx > ‖t‖subx . In this case sx does not exist and fork happens immediately after Φℎ+1(sx−1), Φℎ+1(tx−1):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sx−1)
||| ⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tx−1)
||| Φℎ+1(tx)…Φℎ+1(tm)⟩ℎ

Fork frame is the last one, therefore both
j and �j contain the closing parenthesis ⟩ℎ and we have ℎj = ℎ′j = ℎ. For all
i < j we have ℎi = ℎ′i = −1. Therefore ℎi = ℎ′i ∀i and Φℎ(s) ∼ Φℎ(t). Since first(
j) is ⟩ and first(�j) is one of ⟨ and
⟨⟩, we have Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ(s) < Φℎ(t).

30

(2) Case∞ > ‖s‖subx > ‖t‖subx = −1. In this case both sx and tx exist, sx is not ⊥ and tx is ⊥, and fork happens immediately
after Φℎ+1(sx−1), Φℎ+1(tx−1):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sx−1)
||| ⟨ℎ+2 �

′ ⟩ℎ+1 Φℎ+1(sx+1)…Φℎ+1(sn)⟩ℎ
Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tx−1)

||| ⟨⟩ℎ+1 Φℎ+1(tx+1) …Φℎ+1(tm)⟩ℎ
(2.1) If the fork frame is the last one, then both
j and �j contain the closing parenthesis ⟩ℎ and we have ℎj = ℎ′j = ℎ.(2.2) Otherwise the fork frame is not the last one. We have minℎ(
j), minℎ(�j) ≥ ℎ + 1 and lastℎ(�j) = ℎ + 1 (the last

parenthesis in �j is either ⟨ℎ+1 if x = 1 and sx−1 does not exist, or else one of ⟩ℎ+1 and ⟨⟩ℎ+1), thereforeℎj = ℎ′j = ℎ+1.For subsequent frames i such that j < i < k we have ℎi = ℎ′i = ℎ + 1 (on one hand ℎi, ℎ′i ≤ ℎ + 1 because
ℎj = ℎ′j = ℎ+1, but on the other hand minℎ(
i), minℎ(�i) ≥ ℎ+1). For the last pair of frames we have ℎk = ℎ′k = ℎ(they both contain the closing parenthesis ⟩ℎ).

In both cases ℎi = ℎ′i ∀i ≥ j. Since ℎi = ℎ′i = −1 ∀i < j, we have ℎi = ℎ′i ∀i and therefore Φℎ(s) ∼ Φℎ(t). Since
first(
j) = ⟨< ⟨⟩ = first(�j) we have Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ(s) < Φℎ(t).

(3) Case∞ > ‖s‖subx > ‖t‖subx ≥ 0. In this case both sx and tx exist and none of them is ⊥, and fork happens somewhere after
the opening parenthesis ⟨ℎ+2 and before the closing parenthesis ⟩ℎ+1 in Φℎ(sx), Φℎ(tx):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sx−1) ⟨ℎ+2 �′ |||

′ ⟩ℎ+1 Φℎ+1(sx+1)…Φℎ+1(sn)⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tx−1) ⟨ℎ+2 �′ ||| �
′ ⟩ℎ+1 Φℎ+1(tx+1) …Φℎ+1(tm)⟩ℎ

From ‖s‖subx > ‖t‖subx ≥ 0 it follows that sx contains more alphabet symbols than tx. ConsequentlyΦℎ+1(sx) contains more
alphabet symbols, and thus spans more frames than Φℎ+1(tx). Let l be the index of the frame �l that contains the closing
parenthesis ⟩ℎ+1 of Φℎ+1(tx). By the above reasoning Φℎ+1(sx) does not end in frame
l, therefore
l does not contain the
closing parenthesis ⟩ℎ+1 and we have minℎ(
l) ≥ ℎ+2 and minℎ(�l) = ℎ+1. Furthermore, note that minℎ(�′), minℎ(
 ′),
minℎ(�′) ≥ ℎ + 2, therefore lastℎ(�j) ≥ ℎ + 2 (including the case when �′ is empty), and for all frames i such that
j ≤ i < l (if any) we have ℎi, ℎ′i ≥ ℎ + 2. Consequently, for l-th frame we have ℎl ≥ ℎ + 2 and ℎ′l = ℎ + 1, thus ℎl > ℎ′l.For subsequent frames i such that l < i < k we have minℎ(
i), minℎ(�i) ≥ ℎ + 1, therefore ℎi ≥ ℎ + 1 and ℎ′i = ℎ + 1,
thus ℎi ≥ ℎ′i. For the last pair of frames we have ℎk = ℎ′k = ℎ, as they both contain the closing parenthesis ⟩ℎ. Therefore
Φℎ(s) ⊏ Φℎ(t), which implies Φℎ(s) < Φℎ(t).

Lemma 10. Let s, t ∈ PT (e,w) for some IRE e and string w. If s ≺x t, then Φℎ(s) < Φℎ(t) ∀ℎ.
Proof. The proof is by induction on the length of x. Induction basis for |x| = 1 is given by lemma 9. Induction step: suppose
that the lemma is correct for all x of length |x| < ℎ and let |x| = ℎ (ℎ ≥ 2). Let x = x′.x′′ where x′ ∈ ℕ. At least one of s|x and
t|x must exist (otherwise ‖s‖subx = ∞ = ‖t‖subx which contradicts s ≺x t), therefore both e and e|x′ are compound IREs and s, t
can be represented as s = T o(s1,… , sn) and t = T o(t1,… , tm) where s′ = sx′ = T o′(s′1,… , s′n′) and t′ = tx′ = T o′(t′1,… , t′m′)and both o, o′ ≠ 0 (because Λ and x′ are prefixes of decision position x). Therefore Φℎ(s), Φℎ(t) can be represented as follows:

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sx′−1)

Φℎ+1(s′)
⏞⏞⏞
⟨ℎ+2Φℎ+2(s′1)…Φℎ+2(s′n′)⟩ℎ+1 Φℎ+1(sx′+1)Φℎ+1(sn)⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1)…Φℎ+1(tx′−1) ⟨ℎ+2Φℎ+2(t′1)…Φℎ+2(t′m′)⟩ℎ+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φℎ+1(t′)

Φℎ+1(tx′+1)Φℎ+1(tm)⟩ℎ

Consider any i < x′. By lemma conditions s ≺x t, therefore ‖s‖suby = ‖t‖suby ∀y < x, and in particular ‖si‖suby = ‖ti‖suby ∀y,
therefore by lemma 6 si ∼ ti, therefore by lemma 8 Φℎ+1(si) = Φℎ+1(ti). Since x′ < x we have ‖s‖suby = ‖t‖suby ∀y ≤ x′ and by
lemma 7 ∃e′, w′ ∶ s′, t′ ∈ PT (e′, w′). Since ‖s′‖suby = ‖s‖subx′.y ∀y and ‖t′‖suby = ‖t‖subx′.y ∀y, we have s′ ≺x′′ t′. Since |x′′| < |x|

31

by induction hypothesis we have Φℎ+1(s′) < Φℎ+1(t′). If j is the fork and f ≤ j ≤ k, then Φℎ(s), Φℎ(t) can be represented as:

Φℎ(s) = �0a1… af�
1
f

Φℎ+1(s′)
⏞⏞⏞

�2faf+1… aj�j
|||
jaj+1… ak

1
k

2
kak+1… al
l

Φℎ(t) = �0a1… af�
1
f �2faf+1… aj�j

||| �jaj+1… ak�
1
k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Φℎ+1(t′)

�2kak+1… al�l

Let traces(Φℎ(s),Φℎ(t)) =
(
(ℎ0,… , ℎl), (ℎ′0,… , ℎ′l)

) and traces(Φℎ+1(s′),Φℎ+1(t′)) =
(
(�ℎ,… , �k), (�′ℎ,… , �′k)

). We show
that for frames i such that j ≤ i < k we have ℎi = �i ∧ ℎ′i = �′i and for subsequent frames k ≤ i ≤ l we have ℎi = ℎ′i.
(1) Case i = j < k ≤ l (the fork frame). Since we have shown that Φℎ+1(si) = Φℎ+1(ti) ∀i < x′, and since Φℎ+1(s′) and

Φℎ+1(t′) have nonempty common prefix ⟨ℎ+2, it follows that lastℎ(Φℎ(s) ⊓ Φℎ(t)) = lastℎ(Φℎ+1(s′) ⊓ Φℎ+1(t′)). From
j < k it follows that
j and �j end before ak and are not changed by appending
2k and �2k. Therefore ℎj = �j ∧ ℎ′j = �′j .

(2) Case j < i < k ≤ l. The computation of ℎi, ℎ′i depends only on ℎj , ℎ′j , or which we have shown ℎj = �j ∧ℎ′j = �′j in case(1), and on Φℎ+1(s′), Φℎ+1(t′), which are not changed by appending
2k and �2k since i < k. Therefore ℎi = �i ∧ ℎ′i = �′i .
(3) Case j ≤ i = k < l. We have minℎ(
1k) = minℎ(�1k) = ℎ + 1 and minℎ(
2k) = minℎ(�2k) ≥ ℎ + 1. None of the preceding

frames after the fork contain parentheses with height less than ℎ + 1, therefore ℎk = ℎ′k = ℎ + 1.
(4) Case j ≤ k < i < l. We have ℎi = ℎ′i = ℎ + 1, because ℎk = ℎ′k = ℎ + 1 and minℎ(
i), minℎ(�i) ≥ ℎ + 1.
(5) Case j ≤ k ≤ i = l. We have ℎl = ℎ′l = ℎ, because both
l and �l contain the closing parenthesis ⟩ℎ.

We have shown that ℎi = �i ∧ ℎ′i = �′i ∀i ∶ j ≤ i < k and ℎi = ℎ′i ∀i ∶ k ≤ i ≤ l. It trivially follows that Φℎ+1(s′) ⊏ Φℎ+1(t′)
⇒ Φℎ(s) ⊏ Φℎ(t) and Φℎ+1(s′) ∼ Φℎ+1(t′)⇒ Φℎ(s) ∼ Φℎ(t). Because none of Φℎ+1(s′), Φℎ+1(t′) is a proper prefix of another,
Φℎ+1(s′) ⊂ Φℎ+1(t′)⇒ Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ+1(s′) < Φℎ+1(t′)⇒ Φℎ(s) < Φℎ(t) (the premise has been shown).
Theorem 5. If s, t ∈ PT (e,w) for some IRE e and string w, then s ≺ t⇔ Φℎ(s) < Φℎ(t) ∀ℎ.

Proof. Forward implication is given by lemma 10. Backward implication: suppose, on the contrary, that Φℎ(s) < Φℎ(t) ∀ℎ, but
s ⊀ t. Since ≺ is a strict weak order (by theorem 2), it must be that either s ∼ t (then Φℎ(s) = Φℎ(t) ∀ℎ by lemma 8), or t ≺ s
(then Φℎ(t) < Φℎ(s) ∀ℎ by lemma 10). Both cases contradict Φℎ(s) < Φℎ(t) ∀ℎ, therefore assumption s ⊀ t is incorrect.

Correctness of incremental path comparison
Lemma 1 (Frame-by-frame comparison of PEs). If �, � are comparable PE prefixes, c is an alphabet symbol and
 is a single-
frame PE fragment, then � < � implies �c
 < �c
 .

Proof. Let ((ℎ1,… , ℎn), (ℎ′1,… , ℎ′n)
)
= traces(�, �) where n ≥ 1. Since �c
 , �c
 have one more frame than �, � and the first

n frames are identical to frames of �, �, we can represent traces(�c
, �c
) as ((ℎ1,… , ℎn, ℎn+1), (ℎ′1,… , ℎ′n, ℎ
′
n+1)

).
(1) Case � ∼ �∧� ⊂ �. In this case ℎi = ℎ′i ∀i ≤ n, therefore ℎn+1 = min(ℎn, minℎ(
)) = min(ℎ′n, minℎ(
)) = ℎ′n+1 and �c
 ∼

�c
 . Furthermore, first(�c
∖�c
) = first(�∖�) and first(�c
∖�c
) = first(�∖�), therefore � ⊂ � ⇐⇒ �c
 ⊂ �c
 .
(2) Case � ⊏ �. In this case ∃j ≤ n such that ℎj > ℎ′j and ℎi = ℎ′i ∀j < i ≤ n. We show that ∃l ≤ n+ 1 such that ℎl > ℎ′l and

ℎi = ℎ′i ∀l < i ≤ n + 1, which by definition means that �c
 ⊏ �c
 .
(2a) Case j < n. In this case ℎn = ℎ′n and ℎn+1 = min(ℎn, minℎ(
)) = min(ℎ′n, minℎ(
)) = ℎ′n+1, therefore l = j.(2b) Case j = n and minℎ(
) > ℎ′n. In this case ℎn > ℎ′n and we have ℎn+1 = min(ℎn, minℎ(
)) > ℎ′n and ℎ′n+1 =

min(ℎ′n, minℎ(
)) = ℎ
′
n, therefore ℎn+1 > ℎ′n+1 and l = n + 1.(2c) Case j = n and minℎ(
) ≤ ℎ′n. In this case ℎn > ℎ′n and we have ℎn+1 = min(ℎn, minℎ(
)) = minℎ(
) and

ℎ′n+1 = min(ℎ
′
n, minℎ(
)) = minℎ(
), therefore ℎn+1 = ℎ′n+1 and l = n.

In both cases �c
 < �c
 .
Lemma 2. Minimal paths do not contain tagged �-loops.

32

Proof. Suppose, on the contrary, that � is a minimal path in some TNFA and that � contains at least one tagged �-loop. We
show that it is possible to construct another path �′ such that �′ < �. Path � can be represented as � = �1�2�3, where
�1 = q0

u|�
←→ q, �2 = q

�|�
←→ q is the last tagged �-loop on � and �3 = q

v|

←→ qf . Let �′ = �1�3 be the path that is obtained

from � by removing the loop �2. Paths � and �′ consume the same input string uv and induce comparable PEs ��
 and �
 . Let(
(ℎ1,… , ℎn), (ℎ′1,… , ℎ′n)

)
= traces(��
, �
) and let k be the index of the fork frame. By construction of TNFA the loop �2

must be contained in a sub-TNFA f for sub-IRE of the form e = Rep(, , e1, 1,∞), as this is the only looping TNFA construct
— see algorithm 7. Let f1 be the sub-TNFA for e1. Path � enters f and iterates through f1 at least twice before leaving f (single
iteration is not enough to create a loop by TNFA construction). Let j be the total number of iterations through f1, and let i be
the index of the last �-loop iteration (note that not all iterations are necessarily �-loops). Consider two possible cases:
(1) Case i = j. In this case fork of ��
 and �
 happens immediately after (i − 1)-th iteration:

��
 = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ ||| ⟨ℎxi⟩ℎ ⟩ℎ−1xj+1
�
 = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ ||| ⟩ℎ−1xj+1

Since xi is an �-loop, it is contained in the fork frame of ��
 . We have minℎ(�) = ℎ and minℎ(
) ≤ ℎ − 1, therefore
ℎk = ℎ′k ≤ ℎ−1. Subsequent frames l > k (if any) are identical and thus ℎl = ℎ′l. Furthermore, first(
) =⟩ < ⟨= first(�).
Therefore ��
 ∼ �
 and �
 ⊂ ��
 .

(2) Case i < j. In this case (i + 1)-th iteration cannot be an �-loop (because we assumed that i-th iteration is the last �-loop),
therefore the fork of ��
 and �
 happens inside of i-th iteration of ��
 and (i + 1)-th iteration of �
:

��
 = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ⟨ℎy1 ||| y2⟩ℎ⟨ℎxi+1⟩ℎ⟨ℎxi+2⟩ℎ… ⟨ℎxj⟩ℎ ⟩ℎ−1xj+1
�
 = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ⟨ℎy1 ||| y3 ⟩ℎ⟨ℎxi+2⟩ℎ… ⟨ℎxj⟩ℎ ⟩ℎ−1xj+1

Here y1y2 = xi and y1y3 = xi+1 (i-th iteration is missing from �
 by construction of �′). Fragment y2 is part of the �-
loop, therefore fork frame of ��
 contains a parenthesis ⟩ℎ and we have ℎk = ℎ. On the other hand, y3 contains alphabet
symbols, because xi+1 is not an �-loop and y1 is a part of the �-loop. Therefore fork frame of �
 ends in y3 and we have
ℎ′k > ℎ. All subsequent frames l > k are identical: if they contain parentheses of height less than ℎ, then ℎl = ℎ′l < ℎ;
otherwise ℎl ≤ ℎ and ℎ′l > ℎ. Therefore �
 ⊏ ��
 .

In both cases �
 < ��
 , which contradicts the fact that � is a minimal path.
Lemma 3. GOR1 and GTOP discard paths with tagged �-loops.

Proof. Suppose that GOR1/GTOP finds path �1�2 where �1 = q0
s|�
←→ q1 and �2 = q1

�|

←→ q1 is a tagged �-loop. Both algorithms

construct new paths by exploring transitions from the end state of existing paths, so they can only find �1�2 after they find
�1. Therefore when GOR1/GTOP finds �1�2, it already has some shortest-path candidate �′1 = q0

s|�′
←→ q1 and must compare

ambiguous paths �1�2 and �′1. There are two possibilities: either �′ = � or �′ < � (the latter means that the algorithm has found
a shorter path to q1 in between finding �1 and �1�2). Let

(
(ℎ1,… , ℎk), (ℎ′1,… , ℎ′k)

)
= traces(�′, �
).

(1) Case �′ = �. Because � is a proper prefix of �
 , fork happens at the last frame and we have ℎk = lastℎ(�) and ℎ′k =
min(lastℎ(�), minℎ(
)). If lastℎ(�) > minℎ(
), then ℎk > ℎ′k and � ⊏ �
 . Otherwise ℎk = ℎ′k and � ∼ �
 , and we have
first(�∖�
) = ⊥ and first(�
∖�) ≠ ⊥, therefore � ⊂ �
 . In both cases � < �
 .

(2) Case �′ < �. Let ((�1,… , �k), (�′1,… , �′k)
)
= traces(�′, �). We have ℎk = �k and ℎ′k = min(�′k, minℎ(
)) ≤ �k. If

minℎ(
) < �′k then ℎk > ℎ′k and �′ ⊏ �
 . Otherwise ℎ′k = �′k. If �′ ⊏ � then �′ ⊏ �
 . Otherwise �′ ∼ � and �′ ⊂ �. Noneof � and �′ is a proper prefix of the other because otherwise the longer path has an �-loop through q1, which contradicts
our assumption about �1 and �′1. Therefore first(�′∖�) = first(�′∖�
) and first(�∖�′) = first(�
∖�′). Consequently
�′ ⊂ � ⇐⇒ �′ ⊂ �
 . Thus �′ < �
 .

In both cases �′ < �
 , therefore path �1�2 is discarded.
Lemma 4 (Right distributivity of comparison over concatenation for paths without tagged �-loops). Let �� = q0

u|�
←→ q1 and

�� = q0
u|�
←→ q1 be ambiguous paths in TNFA f for IRE e, and let �
 = q1

�|

←→ q2 be their common �-suffix, such that ���
 and

���
 do not contain tagged �-loops. If � < � then �
 < �
 .

33

Proof. Let ((ℎ1,… , ℎk), (ℎ′1,… , ℎ′k)
)
= traces(�, �) and ((�1,… , �k), (�′1,… , �′k)

)
= traces(�
, �
). Appending
 to � and

� changes only the last frame, therefore for frames i < k we have ℎi = �i and ℎ′i = �′i . Consider two possible cases.
(1) Case � ∼ � ∧ � ⊂ �. We show that �
 ∼ �
 ∧ �
 ⊂ �
 . We have ℎi = ℎ′i ∀i (implied by � ∼ �), therefore �i = �′i ∀iand consequently �
 ∼ �
 . Let x = first(�∖�), y = first(�∖�), x′ = first(�
∖�
) and y′ = first(�
∖�
). If one of

�� and �� is a proper prefix of another, then the longer path contains tagged �-loop through q1, which contradicts lemma
conditions (the suffix of the longer path must be an �-path, because � and � have the same number of frames and the suffix
is contained in the last frame). Therefore none of �� and �� is a proper prefix of another. Consequently x = x′ and y = y′,
and we have � ⊂ � ⇐⇒ x < y ⇐⇒ x′ < y′ ⇐⇒ �
 ⊂ �
 .

(2) Case � ⊏ �: by definition this means that ∃j ≤ k such that ℎj > ℎ′j and ℎi = ℎ′i ∀i > j. We show that �
 ⊏ �
 .
(2a) Case j < k. In this caseℎk = ℎ′k and appending
 does not change relation on the last frame: �k = min(ℎk, minℎ(
)) =

min(ℎ′k, minℎ(
)) = �
′
k. Since �i = ℎi and �′i = ℎ′i for all preceding frames i < k, we have �
 ⊏ �
 .

(2b) Case j = k and minℎ(
) > ℎ′k. In this case ℎk > ℎ′k and again appending
 does not change relation on the last
frame: �k = min(ℎk, minℎ(
)) > ℎ′k and �′k = min(ℎ′k, minℎ(
)) = ℎ′k, therefore �k > �′k. Therefore �
 ⊏ �
 .(2c) Case j = k and minℎ(
) ≤ ℎ′k and ∃l < k such that ℎl > ℎ′l and ℎi = ℎ′i for l < i < k. In this case
 contains
parentheses of low height and appending it makes height on the last frame equal: �k = �′k = minℎ(
). However, therelation on the last preceding differing frame is the same: �l = ℎl > ℎ′l = �′l . Therefore �
 ⊏ �
 .(2d) Case j = k and minℎ(
) ≤ ℎ′k and ∄l < k such that ℎl > ℎ′l and ℎi = ℎ′i for l < i < k. In this case
 contains
parentheses of low height, appending it makes height on the last frame equal: �k = �′k = minℎ(
), and this may
change comparison result as the relation on the last preceding differing frame may be different. We show that in this
case the extended path ���
 contains a tagged �-loop. Consider the fragments of paths �� and �� from fork to join,
including (if it exists) the common �-transition to the fork state: �′� and �′� . Minimal parenthesis height on �′� is ℎk.By TNFA construction this means that �′� is contained in a sub-TNFA f ′ for e|x at some position x with length
|x| = ℎk. As for �′� , its start state coincides with �′� and thus is in f ′. The minimal height of all but the last frames
of �′� is at least ℎk: by conditions of (2d) either k = 1 and there are no such frames, or ℎ′k−1 ≥ ℎk−1 which implies
ℎ′k−1 ≥ ℎk (because by definition ℎk = min(ℎk−1, minℎ(�k)) ≤ ℎk−1). On the last frame of �′� minimal height is
ℎ′k < ℎk. Therefore all but the last frames of �′� are contained in f ′, but the the last frame is not. Now consider �
 :
by conditions of (2d) its minimal height is less than ℎk, therefore it is not contained in f ′, but its start state is the
join point of �′� and �′� and thus in f ′. Taken together, above facts imply that the last frame of ���
 starts in f ′, then
leaves f ′, then returns to f ′ and joins with ���
 , and then leaves f ′ second time. Since the end state of f ′ is unique
(by TNFA construction), ���
 must contain a tagged �-loop through it, which contradicts lemma conditions.

(Note that in the presence of tagged �-loops right distributivity may not hold: we may have paths �1, �2 and �3 such that �2 and
�3 are two different �-loops through the same subautomaton and �1�2 < �1�3, in which case �1�2�3 < �1�3, but �1 < �1�2
because the first is a proper prefix of the second.)

	Efficient POSIX Submatch Extraction on NFA
	Abstract
	Introduction
	Skeleton of the algorithm
	Formalization
	Closure construction
	Tree representation of paths
	Representation of match results
	Disambiguation procedures
	Lazy disambiguation
	TNFA construction
	Complexity analysis
	Benchmarks
	Conclusions and future work
	Acknowledgments
	References
	Appendix

